BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23474943)

  • 1. Microfluidic systems for studying neurotransmitters and neurotransmission.
    Croushore CA; Sweedler JV
    Lab Chip; 2013 May; 13(9):1666-76. PubMed ID: 23474943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices.
    Pagella P; Miran S; Mitsiadis T
    J Vis Exp; 2015 Aug; (102):e53114. PubMed ID: 26327218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.
    Shi M; Majumdar D; Gao Y; Brewer BM; Goodwin CR; McLean JA; Li D; Webb DJ
    Lab Chip; 2013 Aug; 13(15):3008-21. PubMed ID: 23736663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic device for the selective chemical stimulation of neurons and characterization of peptide release with mass spectrometry.
    Croushore CA; Supharoek SA; Lee CY; Jakmunee J; Sweedler JV
    Anal Chem; 2012 Nov; 84(21):9446-52. PubMed ID: 23004687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of neuronal co-cultures with single cell precision.
    Dinh ND; Chiang YY; Hardelauf H; Waide S; Janasek D; West J
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions.
    Li YT; Zhang SH; Wang XY; Zhang XW; Oleinick AI; Svir I; Amatore C; Huang WH
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9313-8. PubMed ID: 26079517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging analysis of neuron to glia interaction in microfluidic culture platform (MCP)-based neuronal axon and glia co-culture system.
    Higashimori H; Yang Y
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23093112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing Single-Cell Based Co-Cultures in a Deterministic Manner with a Microfluidic Chip.
    He CK; Chen YW; Wang SH; Hsu CH
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing cell-cell communication with microfluidic devices.
    Guo F; French JB; Li P; Zhao H; Chan CY; Fick JR; Benkovic SJ; Huang TJ
    Lab Chip; 2013 Aug; 13(16):3152-62. PubMed ID: 23843092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pharmacology of molluscan neurons.
    Rózsa KS
    Prog Neurobiol; 1984; 23(1-2):79-150. PubMed ID: 6151715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating in vitro cell-cell interaction using a microfluidic coculture system.
    Wei CW; Cheng JY; Young TH
    Biomed Microdevices; 2006 Mar; 8(1):65-71. PubMed ID: 16491333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into neuron-glia communication.
    Fields RD; Stevens-Graham B
    Science; 2002 Oct; 298(5593):556-62. PubMed ID: 12386325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets?
    Jha SK; Jha NK; Kumar D; Sharma R; Shrivastava A; Ambasta RK; Kumar P
    J Alzheimers Dis; 2017; 57(4):1017-1039. PubMed ID: 27662312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic construction of minimalistic neuronal co-cultures.
    Dinh ND; Chiang YY; Hardelauf H; Baumann J; Jackson E; Waide S; Sisnaiske J; Frimat JP; van Thriel C; Janasek D; Peyrin JM; West J
    Lab Chip; 2013 Apr; 13(7):1402-12. PubMed ID: 23403713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low density cell culture of locust neurons in closed-channel microfluidic devices.
    Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P
    J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system.
    Wang DY; Wu SC; Lin SP; Hsiao SH; Chung TW; Huang YY
    Biomed Microdevices; 2011 Jun; 13(3):517-26. PubMed ID: 21347824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Listening to the brain: microelectrode biosensors for neurochemicals.
    Dale N; Hatz S; Tian F; Llaudet E
    Trends Biotechnol; 2005 Aug; 23(8):420-8. PubMed ID: 15950302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics.
    Botzolakis EJ; Maheshwari A; Feng HJ; Lagrange AH; Shaver JH; Kassebaum NJ; Venkataraman R; Baudenbacher F; Macdonald RL
    J Neurosci Methods; 2009 Mar; 177(2):294-302. PubMed ID: 19013195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of in-vivo-equivalent epithelial barriers using a micro fluidic device.
    Greß C; Jeziorski M; Saumer M; Schäfer KH
    Biomed Microdevices; 2014 Apr; 16(2):191-8. PubMed ID: 24132858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective pharmacological manipulation of cortical-thalamic co-cultures in a dual-compartment device.
    Kanagasabapathi TT; Franco M; Barone RA; Martinoia S; Wadman WJ; Decré MM
    J Neurosci Methods; 2013 Mar; 214(1):1-8. PubMed ID: 23305774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.