These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23475143)

  • 1. Hybrid solution-processed bulk heterojunction solar cells based on bismuth sulfide nanocrystals.
    Martinez L; Stavrinadis A; Higuchi S; Diedenhofen SL; Bernechea M; Tajima K; Konstantatos G
    Phys Chem Chem Phys; 2013 Apr; 15(15):5482-7. PubMed ID: 23475143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange.
    Greaney MJ; Das S; Webber DH; Bradforth SE; Brutchey RL
    ACS Nano; 2012 May; 6(5):4222-30. PubMed ID: 22537193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.
    Yao S; Chen Z; Li F; Xu B; Song J; Yan L; Jin G; Wen S; Wang C; Yang B; Tian W
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7146-52. PubMed ID: 25781480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.
    Liu CY; Kortshagen UR
    Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.
    Saha SK; Bera A; Pal AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites.
    Stylianakis MM; Stratakis E; Koudoumas E; Kymakis E; Anastasiadis SH
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4864-70. PubMed ID: 22897241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bodipy-backboned polymers as electron donor in bulk heterojunction solar cells.
    Kim B; Ma B; Donuru VR; Liu H; Fréchet JM
    Chem Commun (Camb); 2010 Jun; 46(23):4148-50. PubMed ID: 20390122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells.
    Wong WY; Wang XZ; He Z; Djurisić AB; Yip CT; Cheung KY; Wang H; Mak CS; Chan WK
    Nat Mater; 2007 Jul; 6(7):521-7. PubMed ID: 17496897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices.
    Chen J; Cao Y
    Acc Chem Res; 2009 Nov; 42(11):1709-18. PubMed ID: 19572607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.
    Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF
    Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved electronic coupling in hybrid organic-inorganic nanocomposites employing thiol-functionalized P3HT and bismuth sulfide nanocrystals.
    Martinez L; Higuchi S; MacLachlan AJ; Stavrinadis A; Cates N; Diedenhofen SL; Bernechea M; Sweetnam S; Nelson J; Haque SA; Tajima K; Konstantatos G
    Nanoscale; 2014 Sep; 6(17):10018-10026. PubMed ID: 25029606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient squaraine-based solution processable bulk-heterojunction solar cells.
    Silvestri F; Irwin MD; Beverina L; Facchetti A; Pagani GA; Marks TJ
    J Am Chem Soc; 2008 Dec; 130(52):17640-1. PubMed ID: 19061411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.
    Kumar N; Dutta V
    J Colloid Interface Sci; 2014 Nov; 434():181-7. PubMed ID: 25203909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite.
    Chen L; Pan X; Zheng D; Gao Y; Jiang X; Xu M; Chen H
    Nanotechnology; 2010 Aug; 21(34):345201. PubMed ID: 20671361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics.
    Holliday S; Ashraf RS; Nielsen CB; Kirkus M; Röhr JA; Tan CH; Collado-Fregoso E; Knall AC; Durrant JR; Nelson J; McCulloch I
    J Am Chem Soc; 2015 Jan; 137(2):898-904. PubMed ID: 25545017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.
    Jin X; Sun W; Chen Z; Wei T; Chen C; He X; Yuan Y; Li Y; Li Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8771-81. PubMed ID: 24835845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.