BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23475309)

  • 1. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.
    Cheng H; Dong Z; Hu C; Zhao Y; Hu Y; Qu L; Chen N; Dai L
    Nanoscale; 2013 Apr; 5(8):3428-34. PubMed ID: 23475309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more.
    Lv R; Cruz-Silva E; Terrones M
    ACS Nano; 2014 May; 8(5):4061-9. PubMed ID: 24862032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Synthesis of Three-Dimensional Graphene/Carbon Nanotube/SnO2 Hybrid Architectures with Enhanced Lithium Storage Properties.
    Zhang Z; Wang L; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17963-8. PubMed ID: 26237666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.
    Xue Y; Ding Y; Niu J; Xia Z; Roy A; Chen H; Qu J; Wang ZL; Dai L
    Sci Adv; 2015 Sep; 1(8):e1400198. PubMed ID: 26601246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors.
    Pham DT; Lee TH; Luong DH; Yao F; Ghosh A; Le VT; Kim TH; Li B; Chang J; Lee YH
    ACS Nano; 2015 Feb; 9(2):2018-27. PubMed ID: 25643138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution.
    Peng S; Li L; Han X; Sun W; Srinivasan M; Mhaisalkar SG; Cheng F; Yan Q; Chen J; Ramakrishna S
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12594-9. PubMed ID: 25297454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.
    Zhao MQ; Liu XF; Zhang Q; Tian GL; Huang JQ; Zhu W; Wei F
    ACS Nano; 2012 Dec; 6(12):10759-69. PubMed ID: 23153374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.
    Sun G; Zhang X; Lin R; Yang J; Zhang H; Chen P
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4651-6. PubMed ID: 25694387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.
    Hu Y; Zhao Y; Lu G; Chen N; Zhang Z; Li H; Shao H; Qu L
    Nanotechnology; 2013 May; 24(19):195401. PubMed ID: 23579638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper: towards freestanding flexible electrodes with improved supercapacitive performance.
    Sun Y; Fang Z; Wang C; Zhou A; Duan H
    Nanotechnology; 2015 Sep; 26(37):374002. PubMed ID: 26314327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage.
    Yang Y; Li P; Wu S; Li X; Shi E; Shen Q; Wu D; Xu W; Cao A; Yuan Q
    Chemistry; 2015 Apr; 21(16):6157-64. PubMed ID: 25752493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.
    Yoon SS; Lee KE; Cha HJ; Seong DG; Um MK; Byun JH; Oh Y; Oh JH; Lee W; Lee JU
    Sci Rep; 2015 Nov; 5():16366. PubMed ID: 26549711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.