These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23475333)

  • 1. Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation.
    Metcalf CD; Robinson R; Malpass AJ; Bogle TP; Dell TA; Harris C; Demain SH
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2184-92. PubMed ID: 23475333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of two-dimensional video-based inference of finger kinematics with pose estimation.
    Gionfrida L; Rusli WMR; Bharath AA; Kedgley AE
    PLoS One; 2022; 17(11):e0276799. PubMed ID: 36327291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings.
    Liu X; Rajan S; Ramasarma N; Bonato P; Lee SI
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):599-606. PubMed ID: 29994103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper extremity reachable workspace evaluation with Kinect.
    Kurillo G; Han JJ; Obdržálek S; Yan P; Abresch RT; Nicorici A; Bajcsy R
    Stud Health Technol Inform; 2013; 184():247-53. PubMed ID: 23400165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease.
    Galna B; Barry G; Jackson D; Mhiripiri D; Olivier P; Rochester L
    Gait Posture; 2014 Apr; 39(4):1062-8. PubMed ID: 24560691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Comparison of Hand Kinematics Measured with a Markerless Commercial Head-Mounted Display and a Marker-Based Motion Capture System in Stroke Survivors.
    Casile A; Fregna G; Boarini V; Paoluzzi C; Manfredini F; Lamberti N; Baroni A; Straudi S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability and validity of the Kinect V2 for the assessment of lower extremity rehabilitation exercises.
    Wochatz M; Tilgner N; Mueller S; Rabe S; Eichler S; John M; Völler H; Mayer F
    Gait Posture; 2019 May; 70():330-335. PubMed ID: 30947108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation.
    Lam WWT; Tang YM; Fong KNK
    J Neuroeng Rehabil; 2023 May; 20(1):57. PubMed ID: 37131238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral median nerve block impairs precision pinch movement.
    Li ZM; Nimbarte AD
    Clin Neurophysiol; 2006 Sep; 117(9):1941-8. PubMed ID: 16887386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
    Lin JF; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three local frame definitions for the kinematic analysis of the fingers and the wrist.
    Goislard de Monsabert B; Visser JM; Vigouroux L; Van der Helm FC; Veeger HE
    J Biomech; 2014 Aug; 47(11):2590-7. PubMed ID: 24998990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics.
    Bey MJ; Zauel R; Brock SK; Tashman S
    J Biomech Eng; 2006 Aug; 128(4):604-9. PubMed ID: 16813452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.