These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23475333)

  • 21. Assessment of hand kinematics using inertial and magnetic sensors.
    Kortier HG; Sluiter VI; Roetenberg D; Veltink PH
    J Neuroeng Rehabil; 2014 Apr; 11():70. PubMed ID: 24746123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning Predictive Movement Models From Fabric-Mounted Wearable Sensors.
    Michael B; Howard M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1395-1404. PubMed ID: 26685255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the Leap Motion Controller during the performance of visually-guided upper limb movements.
    Niechwiej-Szwedo E; Gonzalez D; Nouredanesh M; Tung J
    PLoS One; 2018; 13(3):e0193639. PubMed ID: 29529064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gaze and Movement Assessment (GaMA): Inter-site validation of a visuomotor upper limb functional protocol.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    PLoS One; 2019; 14(12):e0219333. PubMed ID: 31887218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing.
    Lahkar BK; Muller A; Dumas R; Reveret L; Robert T
    Front Sports Act Living; 2022; 4():939980. PubMed ID: 35958668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process.
    Park Y; Bae J
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.
    Chen HC; Jou IM; Wang CK; Su FC; Sun YN
    Med Phys; 2010 Jun; 37(6):2670-82. PubMed ID: 20632578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect.
    Stone EE; Skubic M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2925-32. PubMed ID: 23744661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Tangible Solution for Hand Motion Tracking in Clinical Applications.
    Salchow-Hömmen C; Callies L; Laidig D; Valtin M; Schauer T; Seel T
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method for measuring
    Tanashi A; Haddara R; Haddara MM; Ferreira L; Lalone E
    Comput Methods Biomech Biomed Engin; 2022 Aug; 25(11):1276-1287. PubMed ID: 34821518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement.
    Anderst WJ; Baillargeon E; Donaldson WF; Lee JY; Kang JD
    Spine (Phila Pa 1976); 2011 Mar; 36(6):E393-400. PubMed ID: 21372650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinect-based detection of self-paced hand movements: enhancing functional brain mapping paradigms.
    Scherer R; Wagner J; Moitzi G; Müller-Putz G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4748-51. PubMed ID: 23366989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of a markerless motion analysis system for manual wheelchair application.
    Rammer J; Slavens B; Krzak J; Winters J; Riedel S; Harris G
    J Neuroeng Rehabil; 2018 Nov; 15(1):96. PubMed ID: 30400917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors.
    Bai L; Pepper MG; Yan Y; Spurgeon SK; Sakel M; Phillips M
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):232-43. PubMed ID: 25420266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biomechanics of upper extremity kinematic and kinetic modeling: applications to rehabilitation engineering.
    Slavens BA; Harris GF
    Crit Rev Biomed Eng; 2008; 36(2-3):93-125. PubMed ID: 19740069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel method for in-vivo evaluation of finger kinematics including definition of healthy motion patterns.
    Coupier J; Hamoudi S; Telese-Izzi S; Feipel V; Rooze M; Van Sint Jan S
    Clin Biomech (Bristol); 2016 Jan; 31():47-58. PubMed ID: 26490639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients.
    Caimmi M; Carda S; Giovanzana C; Maini ES; Sabatini AM; Smania N; Molteni F
    Neurorehabil Neural Repair; 2008; 22(1):31-9. PubMed ID: 17595381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.