These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23475502)

  • 1. Using over-represented tetrapeptides to predict protein submitochondria locations.
    Lin H; Chen W; Yuan LF; Li ZQ; Ding H
    Acta Biotheor; 2013 Jun; 61(2):259-68. PubMed ID: 23475502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein submitochondrial localization from integrated sequence representation and SVM-based backward feature extraction.
    Li L; Yu S; Xiao W; Li Y; Hu W; Huang L; Zheng X; Zhou S; Yang H
    Mol Biosyst; 2015 Jan; 11(1):170-7. PubMed ID: 25335193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the augmented Chou's pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach.
    Zeng YH; Guo YZ; Xiao RQ; Yang L; Yu LZ; Li ML
    J Theor Biol; 2009 Jul; 259(2):366-72. PubMed ID: 19341746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence.
    Du P; Li Y
    BMC Bioinformatics; 2006 Nov; 7():518. PubMed ID: 17134515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.
    Ahmad K; Waris M; Hayat M
    J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein submitochondria locations by combining different descriptors into the general form of Chou's pseudo amino acid composition.
    Fan GL; Li QZ
    Amino Acids; 2012 Aug; 43(2):545-55. PubMed ID: 22102053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Antioxidant Proteins by Using Optimal Dipeptide Compositions.
    Feng P; Chen W; Lin H
    Interdiscip Sci; 2016 Jun; 8(2):186-191. PubMed ID: 26345449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying N
    Chen W; Feng P; Ding H; Lin H
    Mol Genet Genomics; 2016 Dec; 291(6):2225-2229. PubMed ID: 27590733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identify submitochondria and subchloroplast locations with pseudo amino acid composition: approach from the strategy of discrete wavelet transform feature extraction.
    Shi SP; Qiu JD; Sun XY; Huang JH; Huang SY; Suo SB; Liang RP; Zhang L
    Biochim Biophys Acta; 2011 Mar; 1813(3):424-30. PubMed ID: 21255619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions.
    Ding C; Yuan LF; Guo SH; Lin H; Chen W
    J Proteomics; 2012 Dec; 77():321-8. PubMed ID: 23000219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization.
    Mei S
    J Theor Biol; 2012 Jan; 293():121-30. PubMed ID: 22037046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-label predictor for identifying the subcellular locations of singleplex and multiplex eukaryotic proteins.
    Wang X; Li GZ
    PLoS One; 2012; 7(5):e36317. PubMed ID: 22629314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes.
    Lin H; Chen W; Ding H
    PLoS One; 2013; 8(10):e75726. PubMed ID: 24130738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition.
    Qiu W; Li S; Cui X; Yu Z; Wang M; Du J; Peng Y; Yu B
    J Theor Biol; 2018 Aug; 450():86-103. PubMed ID: 29678694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition.
    Chen W; Feng PM; Deng EZ; Lin H; Chou KC
    Anal Biochem; 2014 Oct; 462():76-83. PubMed ID: 25016190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IonchanPred 2.0: A Tool to Predict Ion Channels and Their Types.
    Zhao YW; Su ZD; Yang W; Lin H; Chen W; Tang H
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28837067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites.
    Chou KC; Wu ZC; Xiao X
    Mol Biosyst; 2012 Feb; 8(2):629-41. PubMed ID: 22134333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction.
    Shen HB; Yang J; Chou KC
    Amino Acids; 2007 Jul; 33(1):57-67. PubMed ID: 17235453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC.
    Su ZD; Huang Y; Zhang ZY; Zhao YW; Wang D; Chen W; Chou KC; Lin H
    Bioinformatics; 2018 Dec; 34(24):4196-4204. PubMed ID: 29931187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iRNA-m2G: Identifying N
    Chen W; Song X; Lv H; Lin H
    Mol Ther Nucleic Acids; 2019 Dec; 18():253-258. PubMed ID: 31581049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.