These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23475920)

  • 21. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.
    Ouared A; Montagnon E; Kazemirad S; Gaboury L; Robidoux A; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1453-66. PubMed ID: 26276955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lorentz force electrical impedance tomography using magnetic field measurements.
    Zengin R; Gençer NG
    Phys Med Biol; 2016 Aug; 61(16):5887-905. PubMed ID: 27436483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic radiation force impulse elastography of breast imaging reporting and data system category 4 breast lesions.
    Jin ZQ; Li XR; Zhou HL; Chen JX; Huang X; Dai HX; Li JW; Chen XD; Xu XH
    Clin Breast Cancer; 2012 Dec; 12(6):420-7. PubMed ID: 22999914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elastography for breast cancer diagnosis using radiation force: system development and performance evaluation.
    Melodelima D; Bamber JC; Duck FA; Shipley JA; Xu L
    Ultrasound Med Biol; 2006 Mar; 32(3):387-96. PubMed ID: 16530097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C-Elastography: In Vitro Feasibility Phantom Study.
    Shahraki DP; Kumar V; Ghavami S; Urban MW; Alizad A; Guzina BB; Fatemi M
    Ultrasound Med Biol; 2020 Jul; 46(7):1738-1754. PubMed ID: 32312548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium.
    Caenen A; Shcherbakova D; Verhegghe B; Papadacci C; Pernot M; Segers P; Swillens A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):439-50. PubMed ID: 25768813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement.
    Nightingale KR; Nightingale RW; Palmeri ML; Trahey GE
    Ultrason Imaging; 2000 Jan; 22(1):35-54. PubMed ID: 10823496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noninvasive vascular elastography using plane-wave and sparse-array imaging.
    Korukonda S; Nayak R; Carson N; Schifitto G; Dogra V; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):332-42. PubMed ID: 23357907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical implementation of magneto-acousto-electrical tomography (MAET) using a linear phased array transducer.
    Gözü MS; Zengin R; Gençer NG
    Phys Med Biol; 2018 Jan; 63(3):035012. PubMed ID: 29372692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional transient and harmonic shear-wave scattering by a soft cylinder for dynamic vascular elastography.
    Henni AH; Schmitt C; Cloutier G
    J Acoust Soc Am; 2008 Oct; 124(4):2394-405. PubMed ID: 19062877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions.
    Chang JM; Won JK; Lee KB; Park IA; Yi A; Moon WK
    AJR Am J Roentgenol; 2013 Aug; 201(2):W347-56. PubMed ID: 23883252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
    Eskandari H; Baghani A; Salcudean SE; Rohling R
    Phys Med Biol; 2009 Jul; 54(13):3997-4017. PubMed ID: 19502703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of B-scan images from two-dimensional transducer arrays: Part II--Comparisons between linear and two-dimensional phased arrays.
    Turnbull DH; Foster FS
    Ultrason Imaging; 1992 Oct; 14(4):344-53. PubMed ID: 1296338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and performance of a miniaturized 64-element high-frequency endoscopic phased array.
    Bezanson A; Adamson R; Brown J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):33-43. PubMed ID: 24402894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the Performance of a 1-D Ultrasound Transducer Array by Subdicing.
    Janjic J; Shabanimotlagh M; van Soest G; van der Steen AF; de Jong N; Verweij MD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1161-71. PubMed ID: 27164584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.