These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23475924)

  • 1. A full-duplex ultrasonic through-wall communication and power delivery system.
    Ashdown J; Wilt KR; Lawry TJ; Saulnier GJ; Shoudy DA; Scarton HA; Gavens AJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):587-95. PubMed ID: 23475924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers.
    Lawry TJ; Wilt KR; Ashdown JD; Scarton HA; Saulnier GJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):194-203. PubMed ID: 23287924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission of Images With Ultrasonic Elastic Shear Waves on a Metallic Pipe Using Amplitude Shift Keying Protocol.
    Heifetz A; Shribak D; Huang X; Wang B; Saniie J; Young J; Bakhtiari S; Vilim RB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1192-1200. PubMed ID: 31995480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic wireless power links for battery-free condition monitoring in metallic enclosures.
    Fu H; Rao J; Harb MS; Theodossiades S
    Ultrasonics; 2021 Jul; 114():106395. PubMed ID: 33756220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of an ultrasonic lamb-wave power delivery system.
    Kural A; Pullin R; Holford K; Lees J; Naylon J; Paget C; Featherston C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1134-40. PubMed ID: 25004476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic mixing in microfluidic channels using integrated transducers.
    Yaralioglu GG; Wygant IO; Marentis TC; Khuri-Yakub BT
    Anal Chem; 2004 Jul; 76(13):3694-8. PubMed ID: 15228343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic transducers working in the air with the continuous wave within the 50-500 kHz frequency range.
    Gudra T; Opielinski KJ
    Ultrasonics; 2004 Apr; 42(1-9):453-8. PubMed ID: 15047328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectronics mounted on a piezoelectric transducer: method, simulations, and measurements.
    Johansson J; Delsing J
    Ultrasonics; 2006 Jan; 44(1):1-11. PubMed ID: 16107274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional scholte wave generation and detection using interdigital capacitive micromachined ultrasonic transducers.
    McLean J; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):756-64. PubMed ID: 15244289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Energy and Data Transfer through a Metal-Liquid Multi-Layer Channel Enhanced by Automatic Gain and Carrier Control.
    Pereira RB; Braga AMB; Kubrusly AC
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures.
    Shih JL; Kobayashi M; Jen CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2103-10. PubMed ID: 20876000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Optimal Design Method for Improving the Efficiency of Ultrasonic Wireless Power Transmission during Communication.
    Li Y; Cui J; Li G; Liu L; Zheng Y; Zang J; Xue C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniature bidirectional RF communication system for micro gastrointestinal robots.
    Wang W; Yan G; Ding G
    J Med Eng Technol; 2003; 27(4):160-3. PubMed ID: 12851060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-power RFID integrated circuits for intelligent healthcare systems.
    Lee SY; Wang LH; Fang Q
    IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1387-96. PubMed ID: 20615816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable through-metal ultrasonic power transfer using a dry-coupled detachable transmitter.
    Allam A; Patel H; Sugino C; St John C; Steinfeldt J; Reinke C; Erturk A; El-Kady I
    Ultrasonics; 2024 Jul; 141():107339. PubMed ID: 38805954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system.
    Wright L; Robinson SP; Humphrey VF
    J Acoust Soc Am; 2009 Mar; 125(3):1374-83. PubMed ID: 19275294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.