These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23475929)

  • 21. A low-power high-speed ultra-wideband pulse radio transmission system.
    Wei Tang ; Culurciello E
    IEEE Trans Biomed Circuits Syst; 2009 Oct; 3(5):286-92. PubMed ID: 23853267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.
    Chow CW; Kuo FM; Shi JW; Yeh CH; Wu YF; Wang CH; Li YT; Pan CL
    Opt Express; 2010 Jan; 18(2):473-8. PubMed ID: 20173867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator.
    Wu TH; Wu JP; Chiu YJ
    Opt Express; 2010 Feb; 18(4):3379-84. PubMed ID: 20389347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SAW integrated modules for 800-MHz cellular radio portable telephones with new frequency allocations.
    Hikita M; Tabuchi T; Ishida Y; Kurosawa K; Hamada K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):531-9. PubMed ID: 18290230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers.
    Morgado JA; Fonseca D; Cartaxo AV
    Opt Express; 2011 Nov; 19(23):23601-12. PubMed ID: 22109240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel reflector-filter using a SAW waveguide directional coupler.
    Tsutsumi J; Matsuda T; Ikata O; Satoh Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1228-34. PubMed ID: 18238664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers.
    Fu J; Zhang F; Zhu D; Pan S
    Opt Express; 2018 Jul; 26(14):18457-18469. PubMed ID: 30114025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photonic generation of ultrawideband signals based on frequency-dependent gain saturation in a reflective semiconductor optical amplifier.
    Chen G; Pan S
    Opt Lett; 2012 Oct; 37(20):4251-3. PubMed ID: 23073427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks.
    Xiong H; Zhang W; Xu H; Du Z; Tang H; Li J
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.
    Tan K; Marpaung D; Pant R; Gao F; Li E; Wang J; Choi DY; Madden S; Luther-Davies B; Sun J; Eggleton BJ
    Opt Express; 2013 Jan; 21(2):2003-11. PubMed ID: 23389181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks.
    Kopta V; Farserotu J; Enz C
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Method for Breath Detection via Stepped-Frequency Continuous Wave Ultra-Wideband (SFCW UWB) Radars Based on Operational Bandwidth Segmentation.
    Lv H; Jiao T; Zhang Y; Liang F; Qi F; Wang J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter.
    Chae MS; Yang Z; Yuce MR; Hoang L; Liu W
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):312-21. PubMed ID: 19435684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios.
    Shaban HA; Abou el-Nasr M; Buehrer RM
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):284-91. PubMed ID: 20007056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance comparison between UWB-IR and MB-OFDM with transmit diversity in implant communications.
    Shimizu Y; Furukawa T; Anzai D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5469-72. PubMed ID: 26737529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noncontact tremor characterization using low-power wideband radar technology.
    Blumrosen G; Uziel M; Rubinsky B; Porrat D
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):674-86. PubMed ID: 22155937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A SAW-based commutation signaling modem for broadband indoor wireless communication.
    Kipens G; Leib H; Saw J; Nisbet J; Dai JD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):634-49. PubMed ID: 18244215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A demonstrator for a low-cost, cordless, multi-carrier spread-spectrum system.
    Kuhne J; Nahler A; Hosemann M; Fettweis GP; Kovacs G; Riha G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):58-64. PubMed ID: 18238517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalable UWB photonic generator based on the combination of doublet pulses.
    Moreno V; Rius M; Mora J; Muriel MA; Capmany J
    Opt Express; 2014 Jun; 22(13):15346-51. PubMed ID: 24977794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-wideband SAW correlator.
    Brocato R; Skinner J; Wouters G; Wendt J; Heller E; Blaich J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1554-6. PubMed ID: 16964902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.