These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 23477355)
1. Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects. Bölgen N; Korkusuz P; Vargel İ; Kılıç E; Güzel E; Çavuşoğlu T; Uçkan D; Pişkin E Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):70-7. PubMed ID: 23477355 [TBL] [Abstract][Full Text] [Related]
2. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920 [TBL] [Abstract][Full Text] [Related]
3. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Liu Y; Ming L; Luo H; Liu W; Zhang Y; Liu H; Jin Y Biomaterials; 2013 Dec; 34(38):9998-10006. PubMed ID: 24079891 [TBL] [Abstract][Full Text] [Related]
4. Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model. Bölgen N; Vargel I; Korkusuz P; Güzel E; Plieva F; Galaev I; Matiasson B; Pişkin E J Biomed Mater Res A; 2009 Oct; 91(1):60-8. PubMed ID: 18690660 [TBL] [Abstract][Full Text] [Related]
5. A Biomimicking Polymeric Cryogel Scaffold for Repair of Critical-Sized Cranial Defect in a Rat Model. Liu C; Lin C; Feng X; Wu Z; Lin G; Quan C; Chen B; Zhang C Tissue Eng Part A; 2019 Dec; 25(23-24):1591-1604. PubMed ID: 30950322 [TBL] [Abstract][Full Text] [Related]
6. Thermoresponsive biodegradable HEMA-lactate-Dextran-co-NIPA cryogels for controlled release of simvastatin. Bölgen N; Aguilar MR; Fernández Mdel M; Gonzalo-Flores S; Villar-Rodil S; San Román J; Pişkin E Artif Cells Nanomed Biotechnol; 2015 Feb; 43(1):40-9. PubMed ID: 24047541 [TBL] [Abstract][Full Text] [Related]
7. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Huang YC; Simmons C; Kaigler D; Rice KG; Mooney DJ Gene Ther; 2005 Mar; 12(5):418-26. PubMed ID: 15647766 [TBL] [Abstract][Full Text] [Related]
9. In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. Pişkin E; Işoğlu IA; Bölgen N; Vargel I; Griffiths S; Cavuşoğlu T; Korkusuz P; Güzel E; Cartmell S J Biomed Mater Res A; 2009 Sep; 90(4):1137-51. PubMed ID: 18671271 [TBL] [Abstract][Full Text] [Related]
10. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model. Sikavitsas VI; van den Dolder J; Bancroft GN; Jansen JA; Mikos AG J Biomed Mater Res A; 2003 Dec; 67(3):944-51. PubMed ID: 14613243 [TBL] [Abstract][Full Text] [Related]
11. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992 [TBL] [Abstract][Full Text] [Related]
12. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair. Chen KY; Chung CM; Chen YS; Bau DT; Yao CH J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds. Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138 [TBL] [Abstract][Full Text] [Related]
14. Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Koob S; Torio-Padron N; Stark GB; Hannig C; Stankovic Z; Finkenzeller G Tissue Eng Part A; 2011 Feb; 17(3-4):311-21. PubMed ID: 20799886 [TBL] [Abstract][Full Text] [Related]
15. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Seebach C; Henrich D; Wilhelm K; Barker JH; Marzi I Cell Transplant; 2012; 21(8):1667-77. PubMed ID: 22507568 [TBL] [Abstract][Full Text] [Related]
16. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. Hou R; Chen F; Yang Y; Cheng X; Gao Z; Yang HO; Wu W; Mao T J Biomed Mater Res A; 2007 Jan; 80(1):85-93. PubMed ID: 16960828 [TBL] [Abstract][Full Text] [Related]
17. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781 [TBL] [Abstract][Full Text] [Related]
18. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
19. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141 [TBL] [Abstract][Full Text] [Related]
20. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects. Mishra R; Goel SK; Gupta KC; Kumar A Tissue Eng Part A; 2014 Feb; 20(3-4):751-62. PubMed ID: 24147880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]