These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23477418)

  • 21. Tunable transport gap in narrow bilayer graphene nanoribbons.
    Yu WJ; Duan X
    Sci Rep; 2013; 3():1248. PubMed ID: 23409239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics.
    Parvez K; Li R; Puniredd SR; Hernandez Y; Hinkel F; Wang S; Feng X; Müllen K
    ACS Nano; 2013 Apr; 7(4):3598-606. PubMed ID: 23531157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focused-laser-enabled p-n junctions in graphene field-effect transistors.
    Kim YD; Bae MH; Seo JT; Kim YS; Kim H; Lee JH; Ahn JR; Lee SW; Chun SH; Park YD
    ACS Nano; 2013 Jul; 7(7):5850-7. PubMed ID: 23782162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. State-of-the-art graphene high-frequency electronics.
    Wu Y; Jenkins KA; Valdes-Garcia A; Farmer DB; Zhu Y; Bol AA; Dimitrakopoulos C; Zhu W; Xia F; Avouris P; Lin YM
    Nano Lett; 2012 Jun; 12(6):3062-7. PubMed ID: 22563820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wide-gap semiconducting graphene from nitrogen-seeded SiC.
    Wang F; Liu G; Rothwell S; Nevius M; Tejeda A; Taleb-Ibrahimi A; Feldman LC; Cohen PI; Conrad EH
    Nano Lett; 2013 Oct; 13(10):4827-32. PubMed ID: 24060338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.
    Boukhvalov DW; Son YW
    Nanoscale; 2012 Jan; 4(2):417-20. PubMed ID: 22113262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning electron transport in graphene-based field-effect devices using block co-polymers.
    Guo S; Ghazinejad M; Qin X; Sun H; Wang W; Zaera F; Ozkan M; Ozkan CS
    Small; 2012 Apr; 8(7):1073-80. PubMed ID: 22331656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly air-stable phosphorus-doped n-type graphene field-effect transistors.
    Some S; Kim J; Lee K; Kulkarni A; Yoon Y; Lee S; Kim T; Lee H
    Adv Mater; 2012 Oct; 24(40):5481-6. PubMed ID: 22886822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps.
    Xu Q; Scuri G; Mathewson C; Kim P; Nuckolls C; Bouilly D
    Nano Lett; 2017 Sep; 17(9):5335-5341. PubMed ID: 28792226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene-graphite oxide field-effect transistors.
    Standley B; Mendez A; Schmidgall E; Bockrath M
    Nano Lett; 2012 Mar; 12(3):1165-9. PubMed ID: 22380722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current saturation and voltage gain in bilayer graphene field effect transistors.
    Szafranek BN; Fiori G; Schall D; Neumaier D; Kurz H
    Nano Lett; 2012 Mar; 12(3):1324-8. PubMed ID: 22339809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing contact resistance in graphene devices through contact area patterning.
    Smith JT; Franklin AD; Farmer DB; Dimitrakopoulos CD
    ACS Nano; 2013 Apr; 7(4):3661-7. PubMed ID: 23473291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Operation of graphene transistors at gigahertz frequencies.
    Lin YM; Jenkins KA; Valdes-Garcia A; Small JP; Farmer DB; Avouris P
    Nano Lett; 2009 Jan; 9(1):422-6. PubMed ID: 19099364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene: an emerging electronic material.
    Weiss NO; Zhou H; Liao L; Liu Y; Jiang S; Huang Y; Duan X
    Adv Mater; 2012 Nov; 24(43):5782-825. PubMed ID: 22930422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in major charge transport by molecular spatial orientation in graphene channel field effect transistors.
    Min M; Seo S; Lee J; Lee SM; Hwang E; Lee H
    Chem Commun (Camb); 2013 Jul; 49(56):6289-91. PubMed ID: 23736065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing.
    Lv R; Li Q; Botello-Méndez AR; Hayashi T; Wang B; Berkdemir A; Hao Q; Elías AL; Cruz-Silva R; Gutiérrez HR; Kim YA; Muramatsu H; Zhu J; Endo M; Terrones H; Charlier JC; Pan M; Terrones M
    Sci Rep; 2012; 2():586. PubMed ID: 22905317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A facile route to recover intrinsic graphene over large scale.
    Shin DW; Lee HM; Yu SM; Lim KS; Jung JH; Kim MK; Kim SW; Han JH; Ruoff RS; Yoo JB
    ACS Nano; 2012 Sep; 6(9):7781-8. PubMed ID: 22928753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical doping and electron-hole conduction asymmetry in graphene devices.
    Farmer DB; Golizadeh-Mojarad R; Perebeinos V; Lin YM; Tulevski GS; Tsang JC; Avouris P
    Nano Lett; 2009 Jan; 9(1):388-92. PubMed ID: 19102701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.