BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23477494)

  • 1. Water-solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures.
    Ghorab MK; Toth SJ; Simpson GJ; Mauer LJ; Taylor LS
    Pharm Dev Technol; 2014 Mar; 19(2):247-56. PubMed ID: 23477494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moisture-Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose.
    Thorat A; Marrs KN; Ghorab MK; Meunier V; Forny L; Taylor LS; Mauer LJ
    J Food Sci; 2017 May; 82(5):1142-1156. PubMed ID: 28319658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-solid interactions between amorphous maltodextrins and crystalline sodium chloride.
    Ghorab MK; Marrs K; Taylor LS; Mauer LJ
    Food Chem; 2014 Feb; 144():26-35. PubMed ID: 24099538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moisture sorption behaviors, water activity-temperature relationships, and physical stability traits of spices, herbs, and seasoning blends containing crystalline and amorphous ingredients.
    Voelker AL; Sommer AA; Mauer LJ
    Food Res Int; 2020 Oct; 136():109608. PubMed ID: 32846628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument.
    Yu X; Kappes SM; Bello-Perez LA; Schmidt SJ
    J Food Sci; 2008 Jan; 73(1):E25-35. PubMed ID: 18211350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Mono-, Di-, and Tri-Saccharides on the Stability and Crystallization of Amorphous Sucrose.
    Thorat AA; Forny L; Meunier V; Taylor LS; Mauer LJ
    J Food Sci; 2018 Nov; 83(11):2827-2839. PubMed ID: 30320406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of methods for determining the deliquescence points of single crystalline ingredients and blends.
    Allan M; Mauer LJ
    Food Chem; 2016 Mar; 195():29-38. PubMed ID: 26575709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of moisture-induced hydrolysis in powder blends stored at and below the deliquescence relative humidity: investigation of sucrose-citric acid mixtures.
    Kwok K; Mauer LJ; Taylor LS
    J Agric Food Chem; 2010 Nov; 58(22):11716-24. PubMed ID: 20964346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Controlled Relative Humidity Storage on Moisture Sorption and Amylopectin Retrogradation in Gelatinized Starch Lyophiles.
    Johnson KA; Mauer LJ
    J Food Sci; 2019 Mar; 84(3):507-523. PubMed ID: 30779350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of absorbed water on the properties of amorphous mixtures containing sucrose.
    Shamblin SL; Zografi G
    Pharm Res; 1999 Jul; 16(7):1119-24. PubMed ID: 10450941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature on the deliquescence properties of food ingredients and blends.
    Lipasek RA; Li N; Schmidt SJ; Taylor LS; Mauer LJ
    J Agric Food Chem; 2013 Sep; 61(38):9241-50. PubMed ID: 23977884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moisture sorption behavior of selected bulking agents used in lyophilized products.
    Fakes MG; Dali MV; Haby TA; Morris KR; Varia SA; Serajuddin AT
    PDA J Pharm Sci Technol; 2000; 54(2):144-9. PubMed ID: 10822985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose-Salt Blends.
    Thorat AA; Forny L; Meunier V; Taylor LS; Mauer LJ
    J Agric Food Chem; 2017 Dec; 65(51):11259-11272. PubMed ID: 29182869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common-ion effects on the deliquescence lowering of crystalline ingredient blends.
    Allan M; Taylor LS; Mauer LJ
    Food Chem; 2016 Mar; 195():2-10. PubMed ID: 26575706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution Properties of Sucrose and Maltodextrins.
    Dupas J; Girard V; Forny L
    Langmuir; 2017 Jan; 33(4):988-995. PubMed ID: 28045268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures.
    Salameh AK; Taylor LS
    J Phys Chem B; 2006 May; 110(20):10190-6. PubMed ID: 16706482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative humidity-temperature transition boundaries for anhydrous β-caffeine and caffeine hydrate crystalline forms.
    Allan MC; Owens B; Mauer LJ
    J Food Sci; 2020 Jun; 85(6):1815-1826. PubMed ID: 32449950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of environmental moisture with powdered green tea formulations: relationship between catechin stability and moisture-induced phase transformations.
    Ortiz J; Kestur US; Taylor LS; Mauer LJ
    J Agric Food Chem; 2009 Jun; 57(11):4691-7. PubMed ID: 19489621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of deliquescence on the chemical stability of vitamins B1, B6, and C in powder blends.
    Hiatt AN; Ferruzzi MG; Taylor LS; Mauer LJ
    J Agric Food Chem; 2008 Aug; 56(15):6471-9. PubMed ID: 18593179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RH-Temperature Stability Diagram of the Dihydrate, β-Anhydrate, and α-Anhydrate Forms of Crystalline Trehalose.
    Allan M; Chamberlain MC; Mauer LJ
    J Food Sci; 2019 Jun; 84(6):1465-1476. PubMed ID: 31042816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.