These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23477503)
1. A novel multi-target drug screening strategy directed against key proteins of DAPk family. Nair SB; Fayaz SM; Rajanikant GK Comb Chem High Throughput Screen; 2013 Jul; 16(6):449-57. PubMed ID: 23477503 [TBL] [Abstract][Full Text] [Related]
2. Death-associated protein kinase as a potential therapeutic target. Schumacher AM; Velentza AV; Watterson DM Expert Opin Ther Targets; 2002 Aug; 6(4):497-506. PubMed ID: 12223064 [TBL] [Abstract][Full Text] [Related]
3. Novel Functions of Death-Associated Protein Kinases through Mitogen-Activated Protein Kinase-Related Signals. Elbadawy M; Usui T; Yamawaki H; Sasaki K Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30287790 [TBL] [Abstract][Full Text] [Related]
4. Structure-activity relationship of novel DAPK inhibitors identified by structure-based virtual screening. Okamoto M; Takayama K; Shimizu T; Muroya A; Furuya T Bioorg Med Chem; 2010 Apr; 18(7):2728-34. PubMed ID: 20206532 [TBL] [Abstract][Full Text] [Related]
5. Structural insight into nucleotide recognition by human death-associated protein kinase. McNamara LK; Watterson DM; Brunzelle JS Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):241-8. PubMed ID: 19237746 [TBL] [Abstract][Full Text] [Related]
6. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Farag AK; Roh EJ Med Res Rev; 2019 Jan; 39(1):349-385. PubMed ID: 29949198 [TBL] [Abstract][Full Text] [Related]
7. Discovery of indirubin derivatives as new class of DRAK2 inhibitors from high throughput screening. Jung ME; Byun BJ; Kim HM; Lee JY; Park JH; Lee N; Son YH; Choi SU; Yang KM; Kim SJ; Lee K; Kim YC; Choi G Bioorg Med Chem Lett; 2016 Jun; 26(11):2719-23. PubMed ID: 27106709 [TBL] [Abstract][Full Text] [Related]
8. The discovery of aurora kinase inhibitor by multi-docking-based virtual screening. Kim JT; Jung SH; Kang SY; Ryu CK; Kang NS Int J Mol Sci; 2014 Nov; 15(11):20403-12. PubMed ID: 25383681 [TBL] [Abstract][Full Text] [Related]
9. Integration of virtual screening with high-throughput screening for the identification of novel Rho-kinase I inhibitors. Gong LL; Fang LH; Peng JH; Liu AL; Du GH J Biotechnol; 2010 Feb; 145(3):295-303. PubMed ID: 19963024 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel drug-resistant EGFR mutant inhibitors by in silico screening using comprehensive assessments of protein structures. Sato T; Watanabe H; Tsuganezawa K; Yuki H; Mikuni J; Yoshikawa S; Kukimoto-Niino M; Fujimoto T; Terazawa Y; Wakiyama M; Kojima H; Okabe T; Nagano T; Shirouzu M; Yokoyama S; Tanaka A; Honma T Bioorg Med Chem; 2012 Jun; 20(12):3756-67. PubMed ID: 22607878 [TBL] [Abstract][Full Text] [Related]
12. Evaluating DAPK as a therapeutic target. Huang Y; Chen L; Guo L; Hupp TR; Lin Y Apoptosis; 2014 Feb; 19(2):371-86. PubMed ID: 24305735 [TBL] [Abstract][Full Text] [Related]
13. A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β. Pradeep H; Rajanikant GK Mol Divers; 2012 Aug; 16(3):553-62. PubMed ID: 22918724 [TBL] [Abstract][Full Text] [Related]
14. Searching for Novel Janus Kinase-2 Inhibitors Using a Combination of Pharmacophore Modeling, 3D-QSAR Studies and Virtual Screening. Vrontaki E; Melagraki G; Afantitis A; Mavromoustakos T; Kollias G Mini Rev Med Chem; 2017; 17(3):268-294. PubMed ID: 27659251 [TBL] [Abstract][Full Text] [Related]
15. De Novo Fragment Design for Drug Discovery and Chemical Biology. Rodrigues T; Reker D; Welin M; Caldera M; Brunner C; Gabernet G; Schneider P; Walse B; Schneider G Angew Chem Int Ed Engl; 2015 Dec; 54(50):15079-83. PubMed ID: 26486226 [TBL] [Abstract][Full Text] [Related]
16. Discovery of novel scaffolds for Rho kinase 2 inhibitor through TRFRET-based high throughput screening assay. Oh KS; Mun J; Cho JE; Lee S; Yi KY; Lim CJ; Lee JS; Park WJ; Lee BH Comb Chem High Throughput Screen; 2013 Jan; 16(1):37-46. PubMed ID: 22934984 [TBL] [Abstract][Full Text] [Related]
17. High throughput virtual screening and E-pharmacophore filtering in the discovery of new BACE-1 inhibitors. Muthusamy K; Singh KhD; Chinnasamy S; Nagamani S; Krishnasamy G; Thiyagarajan C; Premkumar P; Anusuyadevi M Interdiscip Sci; 2013 Jun; 5(2):119-26. PubMed ID: 23740393 [TBL] [Abstract][Full Text] [Related]
18. Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets. Shahin R; Swellmeen L; Shaheen O; Aboalhaija N; Habash M J Comput Aided Mol Des; 2016 Jan; 30(1):39-68. PubMed ID: 26685860 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence labels in kinases: a high-throughput kinase binding assay for the identification of DFG-out binding ligands. Simard JR; Rauh D Methods Mol Biol; 2012; 800():95-117. PubMed ID: 21964785 [TBL] [Abstract][Full Text] [Related]
20. Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures. Tian S; Sun H; Li Y; Pan P; Li D; Hou T J Chem Inf Model; 2013 Oct; 53(10):2743-56. PubMed ID: 24010823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]