These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 23477529)
21. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield. Yu G; Chen D; Arena U; Huang Z; Dai X Waste Manag; 2018 Mar; 73():464-475. PubMed ID: 28803146 [TBL] [Abstract][Full Text] [Related]
22. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge. Zhang L; Xiao B; Hu Z; Liu S; Cheng G; He P; Sun L Waste Manag; 2014 Jan; 34(1):180-4. PubMed ID: 24220150 [TBL] [Abstract][Full Text] [Related]
23. Theoretical Investigation of the Formation Mechanism of NH₃ and HCN during Pyrrole Pyrolysis: The Effect of H₂O. Liu J; Lu Q; Jiang XY; Hu B; Zhang XL; Dong CQ; Yang YP Molecules; 2018 Mar; 23(4):. PubMed ID: 29561787 [TBL] [Abstract][Full Text] [Related]
24. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed. Lu L; Jin Y; Liu H; Ma X; Yoshikawa K Waste Manag; 2014 Jan; 34(1):79-85. PubMed ID: 24120458 [TBL] [Abstract][Full Text] [Related]
25. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production. Beneroso D; Bermúdez JM; Montes-Morán MA; Arenillas A; Menéndez JA Bioresour Technol; 2016 Oct; 218():687-91. PubMed ID: 27420155 [TBL] [Abstract][Full Text] [Related]
27. Tar reduction in pyrolysis vapours from biomass over a hot char bed. Gilbert P; Ryu C; Sharifi V; Swithenbank J Bioresour Technol; 2009 Dec; 100(23):6045-51. PubMed ID: 19604685 [TBL] [Abstract][Full Text] [Related]
28. Effect of temperature on thermophilic composting of aquaculture sludge: NH Koyama M; Nagao N; Syukri F; Rahim AA; Kamarudin MS; Toda T; Mitsuhashi T; Nakasaki K Bioresour Technol; 2018 Oct; 265():207-213. PubMed ID: 29902653 [TBL] [Abstract][Full Text] [Related]
29. Thermo-chemical process with sewage sludge by using CO2. Kwon EE; Yi H; Kwon HH J Environ Manage; 2013 Oct; 128():435-40. PubMed ID: 23792821 [TBL] [Abstract][Full Text] [Related]
30. Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis. Israël G; Szopa C; Raulin F; Cabane M; Niemann HB; Atreya SK; Bauer SJ; Brun JF; Chassefière E; Coll P; Condé E; Coscia D; Hauchecorne A; Millian P; Nguyen MJ; Owen T; Riedler W; Samuelson RE; Siguier JM; Steller M; Sternberg R; Vidal-Madjar C Nature; 2005 Dec; 438(7069):796-9. PubMed ID: 16319825 [TBL] [Abstract][Full Text] [Related]
31. Reactive Force Field Molecular Dynamics Investigation of NH Guo S; Wang Y; Zhu S; Qu H; Zhao D; Li X; Zhao Y Molecules; 2024 Apr; 29(9):. PubMed ID: 38731506 [TBL] [Abstract][Full Text] [Related]
32. High-temperature shock formation of N2 and organics on primordial Titan. McKay CP; Scattergood TW; Pollack JB; Borucki WJ; Van Ghyseghem HT Nature; 1988 Apr; 332(6164):520-22. PubMed ID: 11536599 [TBL] [Abstract][Full Text] [Related]
33. New insights into impact of thermal hydrolysis pretreatment temperature and time on sewage sludge: Structure and composition of sewage sludge from sewage treatment plant. Xu D; Han X; Chen H; Yuan R; Wang F; Zhou B Environ Res; 2020 Dec; 191():110122. PubMed ID: 32835676 [TBL] [Abstract][Full Text] [Related]
34. Heavy tar evolution characteristics during advanced sludge pyrolysis and biomass gasification integrated process. Han H; Li A; Zhu M; Hu S; Xu J; Xiong Z; Ren Q; Wang Y; Jiang L; Su S; Xiang J Sci Total Environ; 2022 Dec; 853():158107. PubMed ID: 36055490 [TBL] [Abstract][Full Text] [Related]
35. Preparation of activated sewage sludge char for low temperature De-NO Chen H; Chen D; Hu Y; Feng Y; Dai X Chemosphere; 2020 Jul; 251():126330. PubMed ID: 32163778 [TBL] [Abstract][Full Text] [Related]
36. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge. Cao JP; Zhao XY; Morishita K; Wei XY; Takarada T Bioresour Technol; 2010 Oct; 101(19):7648-52. PubMed ID: 20488694 [TBL] [Abstract][Full Text] [Related]
37. A hydrogen peroxide/ microwave advanced oxidation process for sewage sludge treatment. Wong WT; Chan WI; Liao PH; Lo KV J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(11):2623-33. PubMed ID: 17000550 [TBL] [Abstract][Full Text] [Related]
38. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance. Wang Z; Chen D; Song X; Zhao L Environ Technol; 2012 Dec; 33(22-24):2481-8. PubMed ID: 23437644 [TBL] [Abstract][Full Text] [Related]
39. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis. Li T; Guo F; Li X; Liu Y; Peng K; Jiang X; Guo C Waste Manag; 2018 Jun; 76():544-554. PubMed ID: 29653883 [TBL] [Abstract][Full Text] [Related]
40. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]