BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23477540)

  • 1. Study of wild-type α-synuclein binding and orientation on gold nanoparticles.
    Yang JA; Johnson BJ; Wu S; Woods WS; George JM; Murphy CJ
    Langmuir; 2013 Apr; 29(14):4603-15. PubMed ID: 23477540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. α-Synuclein's adsorption, conformation, and orientation on cationic gold nanoparticle surfaces seeds global conformation change.
    Yang JA; Lin W; Woods WS; George JM; Murphy CJ
    J Phys Chem B; 2014 Apr; 118(13):3559-71. PubMed ID: 24635210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oriented protein adsorption to gold nanoparticles through a genetically encodable binding motif.
    Reed AM; Metallo SJ
    Langmuir; 2010 Dec; 26(24):18945-50. PubMed ID: 21114269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition.
    Goy-López S; Juárez J; Alatorre-Meda M; Casals E; Puntes VF; Taboada P; Mosquera V
    Langmuir; 2012 Jun; 28(24):9113-26. PubMed ID: 22439664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.
    Schmidt B; Loeschner K; Hadrup N; Mortensen A; Sloth JJ; Koch CB; Larsen EH
    Anal Chem; 2011 Apr; 83(7):2461-8. PubMed ID: 21355549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles.
    Selva Sharma A; Ilanchelian M
    J Phys Chem B; 2015 Jul; 119(30):9461-76. PubMed ID: 26106942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational properties of the SDS-bound state of alpha-synuclein probed by limited proteolysis: unexpected rigidity of the acidic C-terminal tail.
    de Laureto PP; Tosatto L; Frare E; Marin O; Uversky VN; Fontana A
    Biochemistry; 2006 Sep; 45(38):11523-31. PubMed ID: 16981712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecularly imprinted aptamers of gold nanoparticles for the enzymatic inhibition and detection of thrombin.
    Liao YJ; Shiang YC; Huang CC; Chang HT
    Langmuir; 2012 Jun; 28(24):8944-51. PubMed ID: 22300379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent transfection efficiency of PEI-coated gold nanoparticles.
    Cebrián V; Martín-Saavedra F; Yagüe C; Arruebo M; Santamaría J; Vilaboa N
    Acta Biomater; 2011 Oct; 7(10):3645-55. PubMed ID: 21704738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of gold nanoparticles with common human blood proteins.
    Lacerda SH; Park JJ; Meuse C; Pristinski D; Becker ML; Karim A; Douglas JF
    ACS Nano; 2010 Jan; 4(1):365-79. PubMed ID: 20020753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of doxorubicin functionalized gold nanoparticles.
    Mirza AZ; Shamshad H
    Eur J Med Chem; 2011 May; 46(5):1857-60. PubMed ID: 21411194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles.
    Rangnekar A; Sarma TK; Singh AK; Deka J; Ramesh A; Chattopadhyay A
    Langmuir; 2007 May; 23(10):5700-6. PubMed ID: 17425338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable stabilization of gold nanoparticles in aqueous solutions by mononucleotides.
    Zhao W; Lee TM; Leung SS; Hsing IM
    Langmuir; 2007 Jun; 23(13):7143-7. PubMed ID: 17518486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(iv) dioxide at photostationary state.
    Kiyonaga T; Fujii M; Akita T; Kobayashi H; Tada H
    Phys Chem Chem Phys; 2008 Nov; 10(43):6553-61. PubMed ID: 18979040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties.
    Umeda Y; Kojima C; Harada A; Horinaka H; Kono K
    Bioconjug Chem; 2010 Aug; 21(8):1559-64. PubMed ID: 20666440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment and fluorescence enhancement of adenosine using aptamer-gold nanoparticles, PDGF aptamer, and Oligreen.
    Chen SJ; Huang CC; Chang HT
    Talanta; 2010 Apr; 81(1-2):493-8. PubMed ID: 20188952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles.
    Zhang Y; Leng Y; Miao L; Xin J; Wu A
    Dalton Trans; 2013 Apr; 42(15):5485-90. PubMed ID: 23426019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation.
    Sanpui P; Pandey SB; Ghosh SS; Chattopadhyay A
    J Colloid Interface Sci; 2008 Oct; 326(1):129-37. PubMed ID: 18684469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment.
    Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.