These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23477567)

  • 1. High-resolution pollutant dispersion modelling in contaminated coastal sites.
    Ramšak V; Malačič V; Ličer M; Kotnik J; Horvat M; Žagar D
    Environ Res; 2013 Aug; 125():103-12. PubMed ID: 23477567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of mercury transport and transformation processes in the Idrijca and Soca river system.
    Zagar D; Knap A; Warwick JJ; Rajar R; Horvat M; Cetina M
    Sci Total Environ; 2006 Sep; 368(1):149-63. PubMed ID: 16253308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional modelling of mercury cycling in the Gulf of Trieste.
    Rajar R; Zagar D; Sirca A; Horvat M
    Sci Total Environ; 2000 Oct; 260(1-3):109-23. PubMed ID: 11032120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and dispersion of particulate Hg associated with a river plume in coastal Northern Adriatic environments.
    Covelli S; Piani R; Acquavita A; Predonzani S; Faganeli J
    Mar Pollut Bull; 2007; 55(10-12):436-50. PubMed ID: 17945313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the reliability of a statistical oil spill response model.
    Abascal AJ; Castanedo S; Medina R; Liste M
    Mar Pollut Bull; 2010 Nov; 60(11):2099-110. PubMed ID: 20701930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters.
    Periáñez R; Caravaca F
    Mar Pollut Bull; 2010 Sep; 60(9):1412-22. PubMed ID: 20584539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model.
    Lin Y; Larssen T; Vogt RD; Feng X; Zhang H
    Sci Total Environ; 2011 Oct; 409(21):4596-605. PubMed ID: 21855960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-resolution real-time forecasting system for predicting the fate of oil spills in the Strait of Bonifacio (western Mediterranean Sea).
    Cucco A; Sinerchia M; Ribotti A; Olita A; Fazioli L; Perilli A; Sorgente B; Borghini M; Schroeder K; Sorgente R
    Mar Pollut Bull; 2012 Jun; 64(6):1186-200. PubMed ID: 22498317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cross-scale numerical modeling system for management support of oil spill accidents.
    Azevedo A; Oliveira A; Fortunato AB; Zhang J; Baptista AM
    Mar Pollut Bull; 2014 Mar; 80(1-2):132-47. PubMed ID: 24472369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind and freshwater influence over hydrocarbon dispersal on Patos Lagoon, Brazil.
    Janeiro J; Fernandes E; Martins F; Fernandes R
    Mar Pollut Bull; 2008 Apr; 56(4):650-65. PubMed ID: 18313082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oil spill model OILTRANS and its application to the Celtic Sea.
    Berry A; Dabrowski T; Lyons K
    Mar Pollut Bull; 2012 Nov; 64(11):2489-501. PubMed ID: 22901703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional simulation of transport and fate of oil spill under wave induced circulation.
    Liu T; Peter Sheng Y
    Mar Pollut Bull; 2014 Mar; 80(1-2):148-59. PubMed ID: 24485099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.
    Kim CS; Cho YK; Choi BJ; Jung KT; You SH
    Mar Pollut Bull; 2013 Mar; 68(1-2):85-92. PubMed ID: 23321596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-long term oil spill forecast based on logistic regression modelling of met-ocean forcings.
    Chiri H; Abascal AJ; Castanedo S; Medina R
    Mar Pollut Bull; 2019 Sep; 146():962-976. PubMed ID: 31426244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
    De Padova D; Mossa M; Adamo M; De Carolis G; Pasquariello G
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5530-5543. PubMed ID: 28028707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on temporary resolution for offshore marine oil spill emergencies based on remote sensing system.
    Lan GX; Dong KX; Lin JJ
    J Environ Biol; 2016 Sep; 37(5 Spec No):1177-1180. PubMed ID: 29989750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Poseidon operational tool for the prediction of floating pollutant transport.
    Annika P; George T; George P; Konstantinos N; Costas D; Koutitas C
    Mar Pollut Bull; 2001; 43(7-12):270-8. PubMed ID: 11760193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental modelling in the Gulf of Cadiz: heavy metal distributions in water and sediments.
    Periáñez R
    Sci Total Environ; 2009 May; 407(10):3392-406. PubMed ID: 19246075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sediment and pollutant load modelling using an integrated urban drainage modelling toolbox: an application of City Drain.
    Rodríguez JP; Achleitner S; Möderl M; Rauch W; Maksimović C; McIntyre N; Díaz-Granados MA; Rodríguez MS
    Water Sci Technol; 2010; 61(9):2273-82. PubMed ID: 20418624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion.
    Zeinstra-Helfrich M; Koops W; Murk AJ
    Mar Pollut Bull; 2015 Nov; 100(1):102-111. PubMed ID: 26412415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.