These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23478051)

  • 1. Weibull modulus and fracture strength of highly porous hydroxyapatite.
    Fan X; Case ED; Gheorghita I; Baumann MJ
    J Mech Behav Biomed Mater; 2013 Apr; 20():283-95. PubMed ID: 23478051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Part I: porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials.
    Fan X; Case ED; Ren F; Shu Y; Baumann MJ
    J Mech Behav Biomed Mater; 2012 Apr; 8():21-36. PubMed ID: 22402151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials.
    Fan X; Case ED; Ren F; Shu Y; Baumann MJ
    J Mech Behav Biomed Mater; 2012 Apr; 8():99-110. PubMed ID: 22402157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Weibull characteristics of hydroxyapatite and strontium doped hydroxyapatite.
    Yatongchai C; Wren AW; Curran DJ; Hornez JC; Mark R T
    J Mech Behav Biomed Mater; 2013 May; 21():95-108. PubMed ID: 23524073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.
    Lin WS; Ercoli C; Feng C; Morton D
    J Prosthodont; 2012 Jul; 21(5):353-62. PubMed ID: 22462639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone.
    Converse GL; Yue W; Roeder RK
    Biomaterials; 2007 Feb; 28(6):927-35. PubMed ID: 17113143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties.
    Kashiwazaki H; Kishiya Y; Matsuda A; Yamaguchi K; Iizuka T; Tanaka J; Inoue N
    Biomed Mater Eng; 2009; 19(2-3):133-40. PubMed ID: 19581706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity.
    Zhang L; He ZY; Zhang YQ; Jiang YH; Zhou R
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():104-114. PubMed ID: 27287104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near net-shape fabrication of hydroxyapatite glass composites.
    Zhu Q; De With G; Dortmans LJ; Feenstra F
    J Mater Sci Mater Med; 2004 Nov; 15(11):1187-91. PubMed ID: 15880926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous alumina-hydroxyapatite composites through protein foaming-consolidation method.
    Sopyan I; Fadli A; Mel M
    J Mech Behav Biomed Mater; 2012 Apr; 8():86-98. PubMed ID: 22402156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.