These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 23478317)
21. Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Boardman BK; He M; Ouyang Z; Xu H; Pang X; Yang XF Infect Immun; 2008 Sep; 76(9):3844-53. PubMed ID: 18573895 [TBL] [Abstract][Full Text] [Related]
22. Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Troy EB; Lin T; Gao L; Lazinski DW; Lundt M; Camilli A; Norris SJ; Hu LT Mol Microbiol; 2016 Sep; 101(6):1003-23. PubMed ID: 27279039 [TBL] [Abstract][Full Text] [Related]
23. The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Hyde JA; Shaw DK; Smith Iii R; Trzeciakowski JP; Skare JT Mol Microbiol; 2009 Dec; 74(6):1344-55. PubMed ID: 19906179 [TBL] [Abstract][Full Text] [Related]
24. Cyclic-di-GMP binding induces structural rearrangements in the PlzA and PlzC proteins of the Lyme disease and relapsing fever spirochetes: a possible switch mechanism for c-di-GMP-mediated effector functions. Mallory KL; Miller DP; Oliver LD; Freedman JC; Kostick-Dunn JL; Carlyon JA; Marion JD; Bell JK; Marconi RT Pathog Dis; 2016 Nov; 74(8):. PubMed ID: 27852620 [TBL] [Abstract][Full Text] [Related]
25. RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Caimano MJ; Eggers CH; Hazlett KR; Radolf JD Infect Immun; 2004 Nov; 72(11):6433-45. PubMed ID: 15501774 [TBL] [Abstract][Full Text] [Related]
26. Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. Freedman JC; Rogers EA; Kostick JL; Zhang H; Iyer R; Schwartz I; Marconi RT FEMS Immunol Med Microbiol; 2010 Mar; 58(2):285-94. PubMed ID: 20030712 [TBL] [Abstract][Full Text] [Related]
27. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi. Miller CL; Karna SL; Seshu J Mol Microbiol; 2013 Apr; 88(1):105-24. PubMed ID: 23387366 [TBL] [Abstract][Full Text] [Related]
28. Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. Ouyang Z; Narasimhan S; Neelakanta G; Kumar M; Pal U; Fikrig E; Norgard MV BMC Microbiol; 2012 Mar; 12():44. PubMed ID: 22443136 [TBL] [Abstract][Full Text] [Related]
29. Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. von Lackum K; Stevenson B FEMS Microbiol Lett; 2005 Feb; 243(1):173-9. PubMed ID: 15668016 [TBL] [Abstract][Full Text] [Related]
30. The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice. Katona LI Microbiology (Reading); 2015 Nov; 161(11):2243-55. PubMed ID: 26318670 [TBL] [Abstract][Full Text] [Related]
31. Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Lybecker MC; Abel CA; Feig AL; Samuels DS Mol Microbiol; 2010 Nov; 78(3):622-35. PubMed ID: 20815822 [TBL] [Abstract][Full Text] [Related]
32. CsrA (BB0184) is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Ouyang Z; Zhou J; Norgard MV Infect Immun; 2014 Apr; 82(4):1511-22. PubMed ID: 24452681 [TBL] [Abstract][Full Text] [Related]
33. Gene regulation in Borrelia burgdorferi. Samuels DS Annu Rev Microbiol; 2011; 65():479-99. PubMed ID: 21801026 [TBL] [Abstract][Full Text] [Related]
34. BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. Ouyang Z; Deka RK; Norgard MV PLoS Pathog; 2011 Feb; 7(2):e1001272. PubMed ID: 21347346 [TBL] [Abstract][Full Text] [Related]
35. A chemosensory-like histidine kinase is dispensable for chemotaxis in vitro but regulates the virulence of Borrelia burgdorferi through modulating the stability of RpoS. Sze CW; Zhang K; Lynch MJ; Iyer R; Crane BR; Schwartz I; Li C PLoS Pathog; 2023 Nov; 19(11):e1011752. PubMed ID: 38011206 [TBL] [Abstract][Full Text] [Related]
36. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals. Grassmann AA; Tokarz R; Golino C; McLain MA; Groshong AM; Radolf JD; Caimano MJ J Clin Invest; 2023 Mar; 133(5):. PubMed ID: 36649080 [TBL] [Abstract][Full Text] [Related]
37. BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Ouyang Z; Kumar M; Kariu T; Haq S; Goldberg M; Pal U; Norgard MV Mol Microbiol; 2009 Dec; 74(6):1331-43. PubMed ID: 19889086 [TBL] [Abstract][Full Text] [Related]
38. The Kostick-Dunn JL; Izac JR; Freedman JC; Szkotnicki LT; Oliver LD; Marconi RT Front Cell Infect Microbiol; 2018; 8():213. PubMed ID: 30050868 [TBL] [Abstract][Full Text] [Related]
39. Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Sultan SZ; Pitzer JE; Miller MR; Motaleb MA Mol Microbiol; 2010 Jul; 77(1):128-42. PubMed ID: 20444101 [TBL] [Abstract][Full Text] [Related]