These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23478342)

  • 1. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation.
    Turi Z; Ambrus GG; Janacsek K; Emmert K; Hahn L; Paulus W; Antal A
    Restor Neurol Neurosci; 2013; 31(3):275-85. PubMed ID: 23478342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability.
    Chaieb L; Antal A; Paulus W
    Restor Neurol Neurosci; 2011; 29(3):167-75. PubMed ID: 21586823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability.
    Wach C; Krause V; Moliadze V; Paulus W; Schnitzler A; Pollok B
    Behav Brain Res; 2013 Mar; 241():1-6. PubMed ID: 23219965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-dependent electrical stimulation of the visual cortex.
    Kanai R; Chaieb L; Antal A; Walsh V; Paulus W
    Curr Biol; 2008 Dec; 18(23):1839-43. PubMed ID: 19026538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurosensory effects of transcranial alternating current stimulation.
    Raco V; Bauer R; Olenik M; Brkic D; Gharabaghi A
    Brain Stimul; 2014; 7(6):823-31. PubMed ID: 25442154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes.
    Laakso I; Hirata A
    J Neural Eng; 2013 Aug; 10(4):046009. PubMed ID: 23813466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor and phosphene thresholds to transcranial magnetic stimuli: a reproducibility study.
    Fumal A; Bohotin V; Vandenheede M; Seidel L; Maertens de Noordhout A; Schoenen J
    Acta Neurol Belg; 2002 Dec; 102(4):171-5. PubMed ID: 12534244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.
    Cappon D; D'Ostilio K; Garraux G; Rothwell J; Bisiacchi P
    Brain Stimul; 2016; 9(4):518-24. PubMed ID: 27038707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-dependent and montage-based differences in phosphene perception thresholds via transcranial alternating current stimulation.
    Evans ID; Palmisano S; Loughran SP; Legros A; Croft RJ
    Bioelectromagnetics; 2019 Sep; 40(6):365-374. PubMed ID: 31338856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulatory effects of transcranial direct current stimulation on laser-evoked potentials.
    Csifcsak G; Antal A; Hillers F; Levold M; Bachmann CG; Happe S; Nitsche MA; Ellrich J; Paulus W
    Pain Med; 2009 Jan; 10(1):122-32. PubMed ID: 18823388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABA
    Nowak M; Hinson E; van Ede F; Pogosyan A; Guerra A; Quinn A; Brown P; Stagg CJ
    J Neurosci; 2017 Apr; 37(17):4481-4492. PubMed ID: 28348136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does Transcranial Alternating Current Stimulation Induce Cerebellum Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological Approach.
    Naro A; Leo A; Russo M; Cannavò A; Milardi D; Bramanti P; Calabrò RS
    Brain Stimul; 2016; 9(3):388-395. PubMed ID: 26946958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects.
    Fertonani A; Ferrari C; Miniussi C
    Clin Neurophysiol; 2015 Nov; 126(11):2181-8. PubMed ID: 25922128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects.
    Indahlastari A; Kasinadhuni AK; Saar C; Castellano K; Mousa B; Chauhan M; Mareci TH; Sadleir RJ
    Neural Plast; 2018; 2018():8525706. PubMed ID: 30627150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor.
    Mehta AR; Pogosyan A; Brown P; Brittain JS
    Brain Stimul; 2015; 8(2):260-8. PubMed ID: 25499037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.