BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23478432)

  • 1. A single point mutation in the listerial betL σ(A)-dependent promoter leads to improved osmo- and chill-tolerance and a morphological shift at elevated osmolarity.
    Hoffmann RF; McLernon S; Feeney A; Hill C; Sleator RD
    Bioengineered; 2013; 4(6):401-7. PubMed ID: 23478432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28.
    Sleator RD; Gahan CG; Abee T; Hill C
    Appl Environ Microbiol; 1999 May; 65(5):2078-83. PubMed ID: 10224004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures.
    Wemekamp-Kamphuis HH; Sleator RD; Wouters JA; Hill C; Abee T
    Appl Environ Microbiol; 2004 May; 70(5):2912-8. PubMed ID: 15128551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation and posttranslational activity of the betaine transporter BetL in Listeria monocytogenes are controlled by environmental salinity.
    Sleator RD; Wood JM; Hill C
    J Bacteriol; 2003 Dec; 185(24):7140-4. PubMed ID: 14645273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118.
    Sheehan VM; Sleator RD; Fitzgerald GF; Hill C
    Appl Environ Microbiol; 2006 Mar; 72(3):2170-7. PubMed ID: 16517668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium.
    Angelidis AS; Smith GM
    Appl Environ Microbiol; 2003 Dec; 69(12):7492-8. PubMed ID: 14660402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of sigmaB in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is sigmaB dependent.
    Fraser KR; Sue D; Wiedmann M; Boor K; O'Byrne CP
    Appl Environ Microbiol; 2003 Apr; 69(4):2015-22. PubMed ID: 12676677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28.
    Sleator RD; Gahan CGM ; O'Driscoll B; Hill C
    Int J Food Microbiol; 2000 Sep; 60(2-3):261-8. PubMed ID: 11016615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding light on betL*: pPL2-lux mediated real-time analysis of betL* expression in Listeria monocytogenes.
    Keane SM; Culligan EP; Hoffmann RF; Gahan CG; Hill C; Snelling WJ; Sleator RD
    Bioengineered; 2016 Apr; 7(2):116-9. PubMed ID: 27212260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress.
    Miladi H; Elabed H; Ben Slama R; Rhim A; Bakhrouf A
    Arch Microbiol; 2017 Mar; 199(2):259-265. PubMed ID: 27695911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes.
    Ko R; Smith LT
    Appl Environ Microbiol; 1999 Sep; 65(9):4040-8. PubMed ID: 10473414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of transcription of compatible solute transporters by the general stress sigma factor, sigmaB, in Listeria monocytogenes.
    Cetin MS; Zhang C; Hutkins RW; Benson AK
    J Bacteriol; 2004 Feb; 186(3):794-802. PubMed ID: 14729706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress.
    Angelidis AS; Smith GM
    Appl Environ Microbiol; 2003 Feb; 69(2):1013-22. PubMed ID: 12571024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific osmolyte transporters mediate bile tolerance in Listeria monocytogenes.
    Watson D; Sleator RD; Casey PG; Hill C; Gahan CG
    Infect Immun; 2009 Nov; 77(11):4895-904. PubMed ID: 19737907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance.
    Becker LA; Cetin MS; Hutkins RW; Benson AK
    J Bacteriol; 1998 Sep; 180(17):4547-54. PubMed ID: 9721294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity.
    Wemekamp-Kamphuis HH; Wouters JA; Sleator RD; Gahan CG; Hill C; Abee T
    Appl Environ Microbiol; 2002 Oct; 68(10):4710-6. PubMed ID: 12324311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes.
    Okada Y; Okada N; Makino S; Asakura H; Yamamoto S; Igimi S
    FEMS Microbiol Lett; 2006 Oct; 263(1):54-60. PubMed ID: 16958851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes.
    Angelidis AS; Smith LT; Hoffman LM; Smith GM
    Appl Environ Microbiol; 2002 Jun; 68(6):2644-50. PubMed ID: 12039715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sigma(B)-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes.
    Sue D; Boor KJ; Wiedmann M
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3247-3256. PubMed ID: 14600237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.
    Kappes RM; Kempf B; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5071-9. PubMed ID: 8752321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.