These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23478455)

  • 1. Standing frame and electrical stimulation therapies partially preserve bone strength in a rodent model of acute spinal cord injury.
    Zamarioli A; Battaglino RA; Morse LR; Sudhakar S; Maranho DA; Okubo R; Volpon JB; Shimano AC
    Am J Phys Med Rehabil; 2013 May; 92(5):402-10. PubMed ID: 23478455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Electrical Stimulation and Vibration Therapy on Skeletal Muscle Trophism in Rats with Complete Spinal Cord Injury.
    Butezloff MM; Zamarioli A; Maranho DA; Shimano AC
    Am J Phys Med Rehabil; 2015 Nov; 94(11):950-7. PubMed ID: 25802952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats.
    Jiang SD; Jiang LS; Dai LY
    Osteoporos Int; 2006 Oct; 17(10):1552-61. PubMed ID: 16874443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats.
    Yang X; Hao D; Zhang H; Liu B; Yang M; He B
    Osteoporos Int; 2017 Feb; 28(2):687-695. PubMed ID: 27591786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury.
    Dudley-Javoroski S; Saha PK; Liang G; Li C; Gao Z; Shields RK
    Osteoporos Int; 2012 Sep; 23(9):2335-46. PubMed ID: 22187008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time.
    Haider IT; Lobos SM; Simonian N; Schnitzer TJ; Edwards WB
    Osteoporos Int; 2018 Dec; 29(12):2703-2715. PubMed ID: 30334093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cortical and trabecular bone loss after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    J Rehabil Res Dev; 2012; 49(9):1365-76. PubMed ID: 23408218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomic changes in the macroscopic morphology and microarchitecture of denervated long bone tissue after spinal cord injury in rats.
    Zamarioli A; Maranho DA; Butezloff MM; Moura PA; Volpon JB; Shimano AC
    Biomed Res Int; 2014; 2014():853159. PubMed ID: 25136632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats.
    Yang X; He B; Liu P; Yan L; Yang M; Li D
    Eur J Pharmacol; 2015 Oct; 765():209-16. PubMed ID: 26300394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically induced muscle contractions influence bone density decline after spinal cord injury.
    Shields RK; Dudley-Javoroski S; Law LA
    Spine (Phila Pa 1976); 2006 Mar; 31(5):548-53. PubMed ID: 16508550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury.
    Lauer RT; Smith BT; Mulcahey MJ; Betz RR; Johnston TE
    Spinal Cord; 2011 Aug; 49(8):917-23. PubMed ID: 21423253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ultra-early stage hyperbaric oxygenation on the hind limb bone mineral density in rats after complete spinal cord transection.
    Liu M; Wu X; Tong M
    Undersea Hyperb Med; 2013; 40(1):15-22. PubMed ID: 23397864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury.
    Groah SL; Lichy AM; Libin AV; Ljungberg I
    PM R; 2010 Dec; 2(12):1080-7. PubMed ID: 21145519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effects of electrical field stimulation and low-level laser therapy on bone loss in spinal cord-injured rats.
    Medalha CC; Amorim BO; Ferreira JM; Oliveira P; Pereira RM; Tim C; Lirani-Galvão AP; da Silva OL; Renno AC
    Photomed Laser Surg; 2010 Oct; 28(5):669-74. PubMed ID: 20939678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury.
    Lai CH; Chang WH; Chan WP; Peng CW; Shen LK; Chen JJ; Chen SC
    J Rehabil Med; 2010 Feb; 42(2):150-4. PubMed ID: 20140411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sclerostin Antibody Reverses the Severe Sublesional Bone Loss in Rats After Chronic Spinal Cord Injury.
    Zhao W; Li X; Peng Y; Qin Y; Pan J; Li J; Xu A; Ominsky MS; Cardozo C; Feng JQ; Ke HZ; Bauman WA; Qin W
    Calcif Tissue Int; 2018 Oct; 103(4):443-454. PubMed ID: 29931461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Cyclical Neuromuscular Electrical Stimulation Improves Strength and Trophism by Akt Pathway Signaling in Partially Paralyzed Biceps Muscle After Spinal Cord Injury in Rats.
    de Freitas GR; Santo CCDE; de Machado-Pereira NAMM; Bobinski F; Dos Santos ARS; Ilha J
    Phys Ther; 2018 Mar; 98(3):172-181. PubMed ID: 29240948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increases in bone mineral density after functional electrical stimulation cycling exercises in spinal cord injured patients.
    Chen SC; Lai CH; Chan WP; Huang MH; Tsai HW; Chen JJ
    Disabil Rehabil; 2005 Nov; 27(22):1337-41. PubMed ID: 16321917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone loss following spinal cord injury in a rat model.
    Voor MJ; Brown EH; Xu Q; Waddell SW; Burden RL; Burke DA; Magnuson DS
    J Neurotrauma; 2012 May; 29(8):1676-82. PubMed ID: 22181016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.