BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 2347874)

  • 21. Long-term evaluation of porous PEGT/PBT implants for soft tissue augmentation.
    Lamme EN; Druecke D; Pieper J; May PS; Kaim P; Jacobsen F; Steinau HU; Steinstraesser L
    J Biomater Appl; 2008 Jan; 22(4):309-35. PubMed ID: 18089674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatibility of steroid-HA delivery system using adult castrated rams as a model.
    Benghuzzi H; England B
    Biomed Sci Instrum; 2001; 37():275-80. PubMed ID: 11347402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo resorption of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate: a three-year subcutaneous implantation study.
    van Minnen B; van Leeuwen MB; Kors G; Zuidema J; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2008 Jun; 85(4):972-82. PubMed ID: 17907243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules.
    Visscher GE; Robison RL; Maulding HV; Fong JW; Pearson JE; Argentieri GJ
    J Biomed Mater Res; 1985 Mar; 19(3):349-65. PubMed ID: 4077887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells.
    Mokrý J; Karbanová J; Lukás J; Palecková V; Dvoránková B
    Biotechnol Prog; 2000; 16(5):897-904. PubMed ID: 11027187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collagen types I and III at the implant/tissue interface.
    von Recum AF; Opitz H; Wu E
    J Biomed Mater Res; 1993 Jun; 27(6):757-61. PubMed ID: 8408105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biological performance of calcium phosphate ceramics in an infected implantation site: I. Biological performance of hydroxyapatite during Staphylococcus aureus infection.
    van Blitterswijk CA; Grote JJ; de Groot K; Daems WT; Kuijpers W
    J Biomed Mater Res; 1986 Sep; 20(7):989-1002. PubMed ID: 3020060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications.
    Ertel SI; Kohn J; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1995 Nov; 29(11):1337-48. PubMed ID: 8582902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of bone healing by transforming growth factor-beta 1 released from polymeric or ceramic implants.
    Gombotz WR; Pankey SC; Bouchard LS; Phan DH; Puolakkainen PA
    J Appl Biomater; 1994; 5(2):141-50. PubMed ID: 10172073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen.
    van Wachem PB; van Luyn MJ; Olde Damink LH; Dijkstra PJ; Feijen J; Nieuwenhuis P
    J Biomed Mater Res; 1994 Mar; 28(3):353-63. PubMed ID: 8077250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910.
    Matlaga BF; Salthouse TN
    J Biomed Mater Res; 1983 Jan; 17(1):185-97. PubMed ID: 6826574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatibility of surgical-grade dense polycrystalline alumina.
    Christel PS
    Clin Orthop Relat Res; 1992 Sep; (282):10-8. PubMed ID: 1516299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro degradation profiles and in vivo biomaterial-tissue interactions of microwell array delivery devices.
    Hadavi E; de Vries RHW; Smink AM; de Haan B; Leijten J; Schwab LW; Karperien MHBJ; de Vos P; Dijkstra PJ; van Apeldoorn AA
    J Biomed Mater Res B Appl Biomater; 2021 Jan; 109(1):117-127. PubMed ID: 32672384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Suggs LJ; Shive MS; Garcia CA; Anderson JM; Mikos AG
    J Biomed Mater Res; 1999 Jul; 46(1):22-32. PubMed ID: 10357132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel polyurethanes with interconnected porous structure induce in vivo tissue remodeling and accompanied vascularization.
    Jovanovic D; Engels GE; Plantinga JA; Bruinsma M; van Oeveren W; Schouten AJ; van Luyn MJ; Harmsen MC
    J Biomed Mater Res A; 2010 Oct; 95(1):198-208. PubMed ID: 20574980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of hydrogel functional groups on cell behavior.
    Smetana K; Vacík J; Soucková D; Krcová Z; Sulc J
    J Biomed Mater Res; 1990 Apr; 24(4):463-70. PubMed ID: 2189879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study.
    Beumer GJ; van Blitterswijk CA; Ponec M
    Biomaterials; 1994 Jun; 15(7):551-9. PubMed ID: 7918908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatibility of different poly(lactide-coglycolide) polymers implanted into the subconjunctival space in rats.
    Rönkkö S; Kaarniranta K; Kalesnykas G; Uusitalo H
    Ophthalmic Res; 2011; 46(2):55-65. PubMed ID: 21228610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.