These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 23478856)

  • 1. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of coherent phonons with defects and elementary excitations.
    Hase M; Kitajima M
    J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant coherent phonon generation in single-walled carbon nanotubes through near-band-edge excitation.
    Lim YS; Ahn JG; Kim JH; Yee KJ; Joo T; Baik SH; Hároz EH; Booshehri LG; Kono J
    ACS Nano; 2010 Jun; 4(6):3222-6. PubMed ID: 20469843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses.
    Kim JH; Han KJ; Kim NJ; Yee KJ; Lim YS; Sanders GD; Stanton CJ; Booshehri LG; Hároz EH; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037402. PubMed ID: 19257393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent electronic and phononic oscillations in single-walled carbon nanotubes.
    Eom I; Park S; Han HS; Yee KJ; Baik SH; Jeong DY; Joo T; Lim YS
    Nano Lett; 2012 Feb; 12(2):769-73. PubMed ID: 22268958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time- and momentum-resolved phonon-induced relaxation dynamics in carbon nanotubes.
    Köhler C; Watermann T; Malic E
    J Phys Condens Matter; 2013 Mar; 25(10):105301. PubMed ID: 23380669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective coherent phonon-mode generation in single-wall carbon nanotubes.
    Nugraha AR; Hasdeo EH; Saito R
    J Phys Condens Matter; 2017 Feb; 29(5):055302. PubMed ID: 27941224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent phonon dynamics in semiconducting carbon nanotubes: a quantitative study of electron-phonon coupling.
    Lüer L; Gadermaier C; Crochet J; Hertel T; Brida D; Lanzani G
    Phys Rev Lett; 2009 Mar; 102(12):127401. PubMed ID: 19392321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudopotential-based studies of electron transport in graphene and graphene nanoribbons.
    Fischetti MV; Kim J; Narayanan S; Ong ZY; Sachs C; Ferry DK; Aboud SJ
    J Phys Condens Matter; 2013 Nov; 25(47):473202. PubMed ID: 24135050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy.
    Dresselhaus MS; Jorio A; Souza Filho AG; Saito R
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5355-77. PubMed ID: 21041218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of edge-dependent optical selection rules for graphene nanoribbons.
    Chung HC; Lee MH; Chang CP; Lin MF
    Opt Express; 2011 Nov; 19(23):23350-63. PubMed ID: 22109212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.