BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23479015)

  • 1. Functional role of the MADS-box transcriptional factor HAM59 in the flower development in Helianthus annuus L.
    Sizeneva ES; Shul'ga OA; Shchennikova AV; Skryabin KG
    Dokl Biol Sci; 2013 Jan; 448():32-4. PubMed ID: 23479015
    [No Abstract]   [Full Text] [Related]  

  • 2. [MADS-box genes controlling inflorescence morphogenesis in sunflower].
    Shul'ga OA; Shennikova AV; Angenent GS; Skriabin KG
    Ontogenez; 2008; 39(1):4-7. PubMed ID: 18409375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.).
    Shulga OA; Neskorodov YB; Shchennikova AV; Gaponenko AK; Skryabin KG
    Dokl Biochem Biophys; 2015; 461():110-3. PubMed ID: 25937227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic Expression of the Homeotic MADS-Box Gene HAM31 (Helianthus annuus L.) in Transgenic Plants Nicotiana tabacum L. Affects the Gynoecium Identity.
    Shchennikova AV; Shulga OA; Skryabin KG
    Dokl Biochem Biophys; 2018 Nov; 483(1):363-368. PubMed ID: 30607740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional diversification of two MADS-Box genes, HAM45 and HAM59, in sunflower.
    Sizeneva ES; Shul'ga OA; Shchennikova AV; Skryabin KG
    Dokl Biol Sci; 2013; 451():221-4. PubMed ID: 23975461
    [No Abstract]   [Full Text] [Related]  

  • 6. Diversification of the Homeotic AP3 Clade MADS-Box Genes in Asteraceae Species Chrysanthemum morifolium L. and Helianthus annuus L.
    Shchennikova AV; Shulga OA; Skryabin KG
    Dokl Biochem Biophys; 2018 Nov; 483(1):348-354. PubMed ID: 30607737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of three MADS-box genes expressed in sunflower capitulum.
    Dezar CA; Tioni MF; Gonzalez DH; Chan RL
    J Exp Bot; 2003 Jun; 54(387):1637-9. PubMed ID: 12730268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of expression and autoregulation of AGL15, a member of the MADS-box family.
    Zhu C; Perry SE
    Plant J; 2005 Feb; 41(4):583-94. PubMed ID: 15686521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function and diversification of MADS-box genes in rice.
    Yamaguchi T; Hirano HY
    ScientificWorldJournal; 2006 Jul; 6():1923-32. PubMed ID: 17205197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive expression of the sunflower and chrysanthemum genes of the AP1/FUL group changes flowering timing in transgenic tobacco plants.
    Goloveshkina EN; Shul'ga OA; Shchennikova AV; Kamionskaya AM; Skryabin KG
    Dokl Biol Sci; 2010; 434():322-4. PubMed ID: 20963654
    [No Abstract]   [Full Text] [Related]  

  • 12. Genome-wide identification and analysis of the MADS-box gene family in sesame.
    Wei X; Wang L; Yu J; Zhang Y; Li D; Zhang X
    Gene; 2015 Sep; 569(1):66-76. PubMed ID: 25967387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae).
    Valoroso MC; Censullo MC; Aceto S
    PLoS One; 2019; 14(3):e0213185. PubMed ID: 30822337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering.
    Zhang Y; Tang D; Lin X; Ding M; Tong Z
    BMC Plant Biol; 2018 Sep; 18(1):176. PubMed ID: 30176795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification and expression profile of the MADS-box gene family in Erigeron breviscapus.
    Tang W; Tu Y; Cheng X; Zhang L; Meng H; Zhao X; Zhang W; He B
    PLoS One; 2019; 14(12):e0226599. PubMed ID: 31860684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS.
    Linke B; Nothnagel T; Börner T
    Plant J; 2003 Apr; 34(1):27-37. PubMed ID: 12662306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.
    Dreni L; Zhang D
    J Exp Bot; 2016 Mar; 67(6):1625-38. PubMed ID: 26956504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ray flower initiation in the Helianthus radula inflorescence is influenced by a functional allele of the HrCYC2c gene.
    Fambrini M; Bernardi R; Pugliesi C
    Genesis; 2020 Dec; 58(12):e23401. PubMed ID: 33283401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Different action of the APETALA1 gene on the development of reproductive organs in flowers of the abruptus mutant of Arabidopsis thaliana (L.) Heynh].
    Kavaĭ-ool UN; Kupriianova EV; Ezhova TA
    Ontogenez; 2011; 42(4):307-11. PubMed ID: 21950056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.