These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 23479354)
1. Biosensor-expressing spheroid cultures for imaging of drug-induced effects in three dimensions. Wittig R; Richter V; Wittig-Blaich S; Weber P; Strauss WS; Bruns T; Dick TP; Schneckenburger H J Biomol Screen; 2013 Jul; 18(6):736-43. PubMed ID: 23479354 [TBL] [Abstract][Full Text] [Related]
2. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening. Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574 [TBL] [Abstract][Full Text] [Related]
3. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Friedrich J; Ebner R; Kunz-Schughart LA Int J Radiat Biol; 2007; 83(11-12):849-71. PubMed ID: 18058370 [TBL] [Abstract][Full Text] [Related]
4. Real-time imaging of the intracellular glutathione redox potential. Gutscher M; Pauleau AL; Marty L; Brach T; Wabnitz GH; Samstag Y; Meyer AJ; Dick TP Nat Methods; 2008 Jun; 5(6):553-9. PubMed ID: 18469822 [TBL] [Abstract][Full Text] [Related]
5. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Karlsson H; Fryknäs M; Larsson R; Nygren P Exp Cell Res; 2012 Aug; 318(13):1577-85. PubMed ID: 22487097 [TBL] [Abstract][Full Text] [Related]
6. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698 [TBL] [Abstract][Full Text] [Related]
7. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. Kunz-Schughart LA; Freyer JP; Hofstaedter F; Ebner R J Biomol Screen; 2004 Jun; 9(4):273-85. PubMed ID: 15191644 [TBL] [Abstract][Full Text] [Related]
8. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447 [TBL] [Abstract][Full Text] [Related]
9. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. Godugu C; Patel AR; Desai U; Andey T; Sams A; Singh M PLoS One; 2013; 8(1):e53708. PubMed ID: 23349734 [TBL] [Abstract][Full Text] [Related]
10. LA-ICP-MS imaging in multicellular tumor spheroids - a novel tool in the preclinical development of metal-based anticancer drugs. Theiner S; Schreiber-Brynzak E; Jakupec MA; Galanski M; Koellensperger G; Keppler BK Metallomics; 2016 Apr; 8(4):398-402. PubMed ID: 26806253 [TBL] [Abstract][Full Text] [Related]
11. Three dimensional spheroid cell culture for nanoparticle safety testing. Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712 [TBL] [Abstract][Full Text] [Related]
12. Development, validation and pilot screening of an in vitro multi-cellular three-dimensional cancer spheroid assay for anti-cancer drug testing. Lama R; Zhang L; Naim JM; Williams J; Zhou A; Su B Bioorg Med Chem; 2013 Feb; 21(4):922-31. PubMed ID: 23306053 [TBL] [Abstract][Full Text] [Related]
13. A more aggressive breast cancer spheroid model coupled to an electronic capillary sensor system for a high-content screening of cytotoxic agents in cancer therapy: 3-dimensional in vitro tumor spheroids as a screening model. Bartholomä P; Impidjati ; Reininger-Mack A; Zhang Z; Thielecke H; Robitzki A J Biomol Screen; 2005 Oct; 10(7):705-14. PubMed ID: 16131482 [TBL] [Abstract][Full Text] [Related]
14. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927 [TBL] [Abstract][Full Text] [Related]
15. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Ong SM; Zhao Z; Arooz T; Zhao D; Zhang S; Du T; Wasser M; van Noort D; Yu H Biomaterials; 2010 Feb; 31(6):1180-90. PubMed ID: 19889455 [TBL] [Abstract][Full Text] [Related]
16. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Morgan B; Sobotta MC; Dick TP Free Radic Biol Med; 2011 Dec; 51(11):1943-51. PubMed ID: 21964034 [TBL] [Abstract][Full Text] [Related]
17. PDMS well platform for culturing millimeter-size tumor spheroids. Ratnayaka SH; Hillburn TE; Forouzan O; Shevkoplyas SS; Khismatullin DB Biotechnol Prog; 2013; 29(5):1265-9. PubMed ID: 23832880 [TBL] [Abstract][Full Text] [Related]
18. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Frankel A; Man S; Elliott P; Adams J; Kerbel RS Clin Cancer Res; 2000 Sep; 6(9):3719-28. PubMed ID: 10999766 [TBL] [Abstract][Full Text] [Related]
19. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Ma HL; Jiang Q; Han S; Wu Y; Cui Tomshine J; Wang D; Gan Y; Zou G; Liang XJ Mol Imaging; 2012; 11(6):487-98. PubMed ID: 23084249 [TBL] [Abstract][Full Text] [Related]
20. Spheroid-3D and Monolayer-2D Intestinal Electrochemical Biosensor for Toxicity/Viability Testing: Applications in Drug Screening, Food Safety, and Environmental Pollutant Analysis. Flampouri E; Imar S; OConnell K; Singh B ACS Sens; 2019 Mar; 4(3):660-669. PubMed ID: 30698007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]