BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23479641)

  • 1. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle.
    Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools.
    Yang HW; Kim YW; Villafani Y; Song JY; Park YI
    Int J Biol Macromol; 2024 Jun; 274(Pt 2):133407. PubMed ID: 38925190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism.
    Bandara S; Rockwell NC; Zeng X; Ren Z; Wang C; Shin H; Martin SS; Moreno MV; Lagarias JC; Yang X
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33727422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors.
    Rockwell NC; Lagarias JC
    J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green/red light-sensing mechanism in the chromatic acclimation photosensor.
    Nagae T; Fujita Y; Tsuchida T; Kamo T; Seto R; Hamada M; Aoyama H; Sato-Tomita A; Fujisawa T; Eki T; Miyanoiri Y; Ito Y; Soeta T; Ukaji Y; Unno M; Mishima M; Hirose Y
    Sci Adv; 2024 Jun; 10(24):eadn8386. PubMed ID: 38865454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteriochromes: A Rainbow of Photoreceptors.
    Rockwell NC; Lagarias JC
    Annu Rev Microbiol; 2024 Jun; ():. PubMed ID: 38848579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus.
    Rockwell NC; Njuguna SL; Roberts L; Castillo E; Parson VL; Dwojak S; Lagarias JC; Spiller SC
    Biochemistry; 2008 Jul; 47(27):7304-16. PubMed ID: 18549244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes.
    Villafani Y; Yang HW; Park YI
    Mol Cells; 2020 Jun; 43(6):509-516. PubMed ID: 32438780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light.
    Wiltbank LB; Kehoe DM
    mBio; 2016 Feb; 7(1):e02130-15. PubMed ID: 26861023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon.
    Bordowitz JR; Montgomery BL
    J Bacteriol; 2008 Jun; 190(11):4069-74. PubMed ID: 18390655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis.
    Suzuki T; Yoshimura M; Arai M; Narikawa R
    J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor.
    Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R
    FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of key residues regulating fluorescence emission in a red/green cyanobacteriochrome.
    Kannan P; Oh J; Yeon YJ; Park YI; Seo MH; Park K
    Proteins; 2024 Jan; 92(1):106-116. PubMed ID: 37646483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process.
    Takeda Y; Ohtsu I; Suzuki T; Nakasone Y; Fushimi K; Ikeuchi M; Terazima M; Dohra H; Narikawa R
    Arch Biochem Biophys; 2023 Sep; 745():109715. PubMed ID: 37549803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome.
    Niu K; Wang D; Zhang Y; Biju L; Liu N; Wang X; Wang L; Ren Z; Lu F; Yang X; Zhong D
    J Phys Chem Lett; 2024 May; 15(19):5202-5207. PubMed ID: 38717357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochrome structure and signaling mechanisms.
    Rockwell NC; Su YS; Lagarias JC
    Annu Rev Plant Biol; 2006; 57():837-58. PubMed ID: 16669784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing phytochrome's glowing potential.
    Fischer AJ; Lagarias JC
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17334-9. PubMed ID: 15548612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the PHY Domain on the Photoisomerization Step of the Forward P
    Fischer T; Xu Q; Zhao KH; Gärtner W; Slavov C; Wachtveitl J
    Chemistry; 2020 Dec; 26(71):17261-17266. PubMed ID: 32812681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmolytes Modulate Photoactivation of Phytochrome: Probing Protein Hydration.
    Balke J; Díaz Gutiérrez P; Rafaluk-Mohr T; Proksch J; Koksch B; Alexiev U
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes.
    Oliinyk OS; Chernov KG; Verkhusha VV
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28771184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.