These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23479641)

  • 41. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria.
    Gupta A; Pandey P; Gupta R; Tiwari S; Singh SP
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1915-1930. PubMed ID: 38222287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elucidating the origins of phycocyanobilin biosynthesis and phycobiliproteins.
    Rockwell NC; Martin SS; Lagarias JC
    Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2300770120. PubMed ID: 37071675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromatic Acclimation Processes and Their Relationships with Phycobiliprotein Complexes.
    Wang F; Chen M
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36013980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension.
    Kurttila M; Etzl S; Rumfeldt J; Takala H; Galler N; Winkler A; Ihalainen JA
    Photochem Photobiol Sci; 2022 Nov; 21(11):1881-1894. PubMed ID: 35984631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A hybrid type of chromatic acclimation regulated by the dual green/red photosensory systems in cyanobacteria.
    Otsu T; Eki T; Hirose Y
    Plant Physiol; 2022 Aug; 190(1):779-793. PubMed ID: 35751608
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
    Rockwell NC; Moreno MV; Martin SS; Lagarias JC
    Photochem Photobiol Sci; 2022 Apr; 21(4):471-491. PubMed ID: 35411484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2.
    Altmayer S; Köhler L; Bielytskyi P; Gärtner W; Matysik J; Wiebeler C; Song C
    Photochem Photobiol Sci; 2022 Apr; 21(4):447-469. PubMed ID: 35394641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.
    Tang K; Beyer HM; Zurbriggen MD; Gärtner W
    Chem Rev; 2021 Dec; 121(24):14906-14956. PubMed ID: 34669383
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural diversity provides a broad spectrum of cyanobacteriochrome-based diguanylate cyclases.
    Blain-Hartung M; Rockwell NC; Lagarias JC
    Plant Physiol; 2021 Oct; 187(2):632-645. PubMed ID: 34608946
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectroscopic approach for exploring structure and function of photoreceptor proteins.
    Unno M; Hirose Y; Mishima M; Kikukawa T; Fujisawa T; Iwata T; Tamogami J
    Biophys Physicobiol; 2021; 18():127-130. PubMed ID: 34178563
    [No Abstract]   [Full Text] [Related]  

  • 51. Cryo-Electron Microscopy of
    Wahlgren WY; Golonka D; Westenhoff S; Möglich A
    Front Plant Sci; 2021; 12():663751. PubMed ID: 34108981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phytochromes in
    Lamparter T; Xue P; Elkurdi A; Kaeser G; Sauthof L; Scheerer P; Krauß N
    Front Plant Sci; 2021; 12():642801. PubMed ID: 33995441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
    Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism.
    Bandara S; Rockwell NC; Zeng X; Ren Z; Wang C; Shin H; Martin SS; Moreno MV; Lagarias JC; Yang X
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33727422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.
    Fushimi K; Narikawa R
    Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling.
    Kamo T; Eki T; Hirose Y
    Plant Cell Physiol; 2021 May; 62(2):334-347. PubMed ID: 33386854
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon Atoms Speaking Out: How the Geometric Sensitivity of
    Jähnigen S; Sebastiani D
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255423
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from
    Jiang SD; Sheng Y; Wu XJ; Zhu YL; Li PP
    J Microbiol Biotechnol; 2021 Feb; 31(2):233-239. PubMed ID: 33203817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A far-red cyanobacteriochrome lineage specific for verdins.
    Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the PHY Domain on the Photoisomerization Step of the Forward P
    Fischer T; Xu Q; Zhao KH; Gärtner W; Slavov C; Wachtveitl J
    Chemistry; 2020 Dec; 26(71):17261-17266. PubMed ID: 32812681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.