These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23479819)

  • 1. Kinetics of bacterial bioluminescence and the fluorescent transient.
    Matheso IB; Lee J
    Photochem Photobiol; 1983 Aug; 38(2):231-40. PubMed ID: 23479819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
    Petushkov VN; Ketelaars M; Gibson BG; Lee J
    Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence decay kinetics in the reaction of bacterial luciferase with different aldehydes.
    Ismailov AD; Sobolev AYu ; Danilov VS
    J Biolumin Chemilumin; 1990; 5(3):213-7. PubMed ID: 2220421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic excitation transfer in the complex of lumazine protein with bacterial bioluminescence intermediates.
    Lee J; Wang YY; Gibson BG
    Biochemistry; 1991 Jul; 30(28):6825-35. PubMed ID: 2069948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic fluorescence properties of bacterial luciferase intermediates.
    Lee J; O'Kane DJ; Gibson BG
    Biochemistry; 1988 Jun; 27(13):4862-70. PubMed ID: 3167018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of excitation transfer in the protein complex of bacterial luciferase hydroxyflavin and the associated yellow fluorescence proteins from Vibrio fischeri Y1.
    Petushkov VN; Gibson BG; Lee J
    Biochemistry; 1996 Jun; 35(25):8413-8. PubMed ID: 8679599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase.
    Low JC; Tu SC
    Photochem Photobiol; 2003 Apr; 77(4):446-52. PubMed ID: 12733657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence spectral and fluorescence dynamics study of the interaction of lumazine protein with the intermediates of bacterial luciferase bioluminescence.
    Lee J; O'Kane DJ; Gibson BG
    Biochemistry; 1989 May; 28(10):4263-71. PubMed ID: 2765486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters.
    Kurfürst M; Macheroux P; Ghisla S; Hastings JW
    Eur J Biochem; 1989 May; 181(2):453-7. PubMed ID: 2714296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase.
    Jeffers CE; Nichols JC; Tu SC
    Biochemistry; 2003 Jan; 42(2):529-34. PubMed ID: 12525181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent polyene aliphatics as spectroscopic and mechanistic probes for bacterial luciferase: evidence against carbonyl product from aldehyde as the primary excited species.
    Cho KW; Tu SC; Shao R
    Photochem Photobiol; 1993 Feb; 57(2):396-402. PubMed ID: 8451303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion.
    Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues.
    Suadee C; Nijvipakul S; Svasti J; Entsch B; Ballou DP; Chaiyen P
    J Biochem; 2007 Oct; 142(4):539-52. PubMed ID: 17761697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic fluorescence study of the interaction of lumazine protein with bacterial luciferases.
    Lee J; O'Kane DJ; Gibson BG
    Biophys Chem; 1989 Mar; 33(1):99-111. PubMed ID: 2720095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between luciferases from various species of bioluminescent bacteria and the yellow fluorescent protein of Vibrio fischeri strain Y-1.
    Daubner SC; Baldwin TO
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1191-8. PubMed ID: 2742584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of components of fluorescence spectra of mixtures by intensity- and anisotropy decay-associated analysis: the bacterial luciferase intermediates.
    Lee J; Wang YY; Gibson BG
    Anal Biochem; 1990 Mar; 185(2):220-9. PubMed ID: 2339779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioluminescence emission from the reaction of luciferase-flavin mononucleotide radical with O2-.
    Kurfürst M; Ghisla S; Hastings JW
    Biochemistry; 1983 Mar; 22(7):1521-5. PubMed ID: 6849864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.