BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23480097)

  • 1. CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts.
    Loveless BT; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2013 Apr; 135(16):6107-21. PubMed ID: 23480097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.
    Ishikawa A; Neurock M; Iglesia E
    J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense CO Adlayers as Enablers of CO Hydrogenation Turnovers on Ru Surfaces.
    Liu J; Hibbitts D; Iglesia E
    J Am Chem Soc; 2017 Aug; 139(34):11789-11802. PubMed ID: 28825476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001).
    Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ
    J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts.
    Hibbitts DD; Loveless BT; Neurock M; Iglesia E
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12273-8. PubMed ID: 24123803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient cluster-based catalysts for asymmetric hydrogenation of α-unsaturated carboxylic acids.
    Moberg V; Duquesne R; Contaldi S; Röhrs O; Nachtigall J; Damoense L; Hutton AT; Green M; Monari M; Santelia D; Haukka M; Nordlander E
    Chemistry; 2012 Sep; 18(39):12458-78. PubMed ID: 22890820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new insight into the initial step in the Fischer-Tropsch synthesis: CO dissociation on Ru surfaces.
    Li H; Fu G; Xu X
    Phys Chem Chem Phys; 2012 Dec; 14(48):16686-94. PubMed ID: 23131901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.
    Sad ME; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Dec; 133(50):20384-98. PubMed ID: 22023723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols.
    Stewart B; Nyhlen J; Martín-Matute B; Bäckvall JE; Privalov T
    Dalton Trans; 2013 Jan; 42(4):927-34. PubMed ID: 23060073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis.
    Huo CF; Li YW; Wang J; Jiao H
    J Am Chem Soc; 2009 Oct; 131(41):14713-21. PubMed ID: 19780531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing C-O bond activation on gas-phase transition metal clusters: infrared multiple photon dissociation spectroscopy of Fe, Ru, Re, and W cluster CO complexes.
    Lyon JT; Gruene P; Fielicke A; Meijer G; Rayner DM
    J Chem Phys; 2009 Nov; 131(18):184706. PubMed ID: 19916622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the adsorption competition and the relationship between dissociation and association reactions in ammonia synthesis.
    Song T; Hu P
    J Chem Phys; 2007 Dec; 127(23):234706. PubMed ID: 18154408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optimally performing Fischer-Tropsch catalyst.
    Filot IA; van Santen RA; Hensen EJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12746-50. PubMed ID: 25168456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Mechanistic Assessment of Alkanol/Alkanal Decarbonylation and Deoxygenation Pathways on Metal Catalysts.
    Gürbüz EI; Hibbitts DD; Iglesia E
    J Am Chem Soc; 2015 Sep; 137(37):11984-95. PubMed ID: 26356575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate.
    Li W; Liu H; Iglesia E
    J Phys Chem B; 2006 Nov; 110(46):23337-42. PubMed ID: 17107184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis.
    den Breejen JP; Radstake PB; Bezemer GL; Bitter JH; Frøseth V; Holmen A; de Jong KP
    J Am Chem Soc; 2009 May; 131(20):7197-203. PubMed ID: 19402702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.