These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2348025)

  • 1. Acoustic recognition of voice disorders: a comparative study of running speech versus sustained vowels.
    Klingholtz F
    J Acoust Soc Am; 1990 May; 87(5):2218-24. PubMed ID: 2348025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic analyses of sustained and running voices from patients with laryngeal pathologies.
    Zhang Y; Jiang JJ
    J Voice; 2008 Jan; 22(1):1-9. PubMed ID: 16978835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Least mean square measures of voice perturbation.
    Milenkovic P
    J Speech Hear Res; 1987 Dec; 30(4):529-38. PubMed ID: 2961933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive method for tracking voicing irregularities.
    Qi Y; Shipp T
    J Acoust Soc Am; 1992 Jun; 91(6):3471-7. PubMed ID: 1535639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of phonetograms.
    Gramming P; Sundberg J; Akerlund L
    Folia Phoniatr (Basel); 1991; 43(2):79-92. PubMed ID: 1916550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases.
    Orozco-Arroyave JR; Belalcazar-Bolaños EA; Arias-Londoño JD; Vargas-Bonilla JF; Skodda S; Rusz J; Daqrouq K; Hönig F; Nöth E
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1820-8. PubMed ID: 26277012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency components of normal and dysphonic voices.
    Valencia Naranjo N; Mendoza Lara E; Mateo Rodríguez I; Carballo García G
    J Voice; 1994 Jun; 8(2):157-62. PubMed ID: 8061771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic discrimination of pathological voice: sustained vowels versus continuous speech.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 2001 Apr; 44(2):327-39. PubMed ID: 11324655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sentence/vowel correlation in the evaluation of dysphonia.
    Wolfe V; Cornell R; Fitch J
    J Voice; 1995 Sep; 9(3):297-303. PubMed ID: 8541973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-time average spectrograms of dysphonic voices before and after therapy.
    Kitzing P; Akerlund L
    Folia Phoniatr (Basel); 1993; 45(2):53-61. PubMed ID: 8325570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of dysphonic voices by means of a filterbank-based spectral analysis: sustained vowels and running speech.
    Fraile R; Godino-Llorente JI; Sáenz-Lechón N; Osma-Ruiz V; Gutiérrez-Arriola JM
    J Voice; 2013 Jan; 27(1):11-23. PubMed ID: 23146720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Moving Window on Acoustic Analysis.
    Shu M; Jiang JJ; Willey M
    J Voice; 2016 Jan; 30(1):5-10. PubMed ID: 25998407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of different phonetic materials for perceptive analysis of dysphonia].
    Révis J; Giovanni A; Wuyts F; Triglia JM
    Rev Laryngol Otol Rhinol (Bord); 1997; 118(4):247-52. PubMed ID: 9637094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective voice analysis in dysphonic patients: new data including nonlinear measurements.
    Yu P; Garrel R; Nicollas R; Ouaknine M; Giovanni A
    Folia Phoniatr Logop; 2007; 59(1):20-30. PubMed ID: 17172783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet time-frequency analysis and least squares support vector machines for the identification of voice disorders.
    Fonseca ES; Guido RC; Scalassara PR; Maciel CD; Pereira JC
    Comput Biol Med; 2007 Apr; 37(4):571-8. PubMed ID: 17078942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Variability in the digital voice analysis depending on the analyzed vocal, in normal patients and in patients with dysphonia].
    Preciado López JA; Calzada Uriondo MG; Zabaleta López M; García Cano FJ
    Acta Otorrinolaringol Esp; 2000 Oct; 51(7):618-28. PubMed ID: 11270041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different voice samples for perceptual analysis.
    Revis J; Giovanni A; Wuyts F; Triglia J
    Folia Phoniatr Logop; 1999; 51(3):108-16. PubMed ID: 10394058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.