These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23480720)

  • 1. A novel design of bioartificial kidneys with improved cell performance and haemocompatibility.
    Oo ZY; Kandasamy K; Tasnim F; Zink D
    J Cell Mol Med; 2013 Apr; 17(4):497-507. PubMed ID: 23480720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells.
    Sanechika N; Sawada K; Usui Y; Hanai K; Kakuta T; Suzuki H; Kanai G; Fujimura S; Yokoyama TA; Fukagawa M; Terachi T; Saito A
    Nephrol Dial Transplant; 2011 Sep; 26(9):2761-9. PubMed ID: 21421594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of bioartificial kidneys.
    Saito A
    Nephrology (Carlton); 2003 Oct; 8 Suppl():S10-5. PubMed ID: 15012685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys.
    Oo ZY; Deng R; Hu M; Ni M; Kandasamy K; bin Ibrahim MS; Ying JY; Zink D
    Biomaterials; 2011 Dec; 32(34):8806-15. PubMed ID: 21872923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research into the development of a wearable bioartificial kidney with a continuous hemofilter and a bioartificial tubule device using tubular epithelial cells.
    Saito A
    Artif Organs; 2004 Jan; 28(1):58-63. PubMed ID: 14720290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bone morphogenetic proteins on primary human renal cells and the generation of bone morphogenetic protein-7-expressing cells for application in bioartificial kidneys.
    Tasnim F; Kandasamy K; Muck JS; Bin Ibrahim MS; Ying JY; Zink D
    Tissue Eng Part A; 2012 Feb; 18(3-4):262-76. PubMed ID: 21854258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of membrane materials and membrane coatings for bioreactor units of bioartificial kidneys.
    Ni M; Teo JC; Ibrahim MS; Zhang K; Tasnim F; Chow PY; Zink D; Ying JY
    Biomaterials; 2011 Feb; 32(6):1465-76. PubMed ID: 21145586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bioartificial kidney and bioengineered membranes in acute kidney injury.
    Ding F; Humes HD
    Nephron Exp Nephrol; 2008; 109(4):e118-22. PubMed ID: 18802374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design engineering of a bioartificial renal tubule cell therapy device.
    Nikolovski J; Gulari E; Humes HD
    Cell Transplant; 1999; 8(4):351-64. PubMed ID: 10478715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bioartificial kidney in the treatment of acute renal failure.
    Humes HD; Fissell WH; Weitzel WF
    Kidney Int Suppl; 2002 May; (80):121-5. PubMed ID: 11982826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Present status and perspectives of bioartificial kidneys.
    Saito A; Aung T; Sekiguchi K; Sato Y; Vu DM; Inagaki M; Kanai G; Tanaka R; Suzuki H; Kakuta T
    J Artif Organs; 2006; 9(3):130-5. PubMed ID: 16998696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upscaling of a living membrane for bioartificial kidney device.
    Chevtchik NV; Fedecostante M; Jansen J; Mihajlovic M; Wilmer M; RĂ¼th M; Masereeuw R; Stamatialis D
    Eur J Pharmacol; 2016 Nov; 790():28-35. PubMed ID: 27395800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of water and electrolyte transport of tubular epithelial cells under osmotic and hydraulic pressure for development of bioartificial tubules.
    Terashima M; Fujita Y; Sugano K; Asano M; Kagiwada N; Sheng Y; Nakamura S; Hasegawa A; Kakuta T; Saito A
    Artif Organs; 2001 Mar; 25(3):209-12. PubMed ID: 11284888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bioartificial kidneys].
    Saito A
    Nihon Rinsho; 2004 Jun; 62 Suppl 6():610-8. PubMed ID: 15250378
    [No Abstract]   [Full Text] [Related]  

  • 15. Renal epithelial-cell-controlled solute transport across permeable membranes as the foundation for a bioartificial kidney.
    Ip TK; Aebischer P
    Artif Organs; 1989 Feb; 13(1):58-65. PubMed ID: 2653286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of a bioengineered artificial kidney in renal failure.
    Fissell WH; Kimball J; MacKay SM; Funke A; Humes HD
    Ann N Y Acad Sci; 2001 Nov; 944():284-95. PubMed ID: 11797678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics.
    Humes HD; MacKay SM; Funke AJ; Buffington DA
    Kidney Int; 1999 Jun; 55(6):2502-14. PubMed ID: 10354300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of bioartificial renal tubule assist device in vitro and its function of transporting sodium and glucose.
    Dong X; Chen J; He Q; Yang Y; Zhang W
    J Huazhong Univ Sci Technolog Med Sci; 2009 Aug; 29(4):517-21. PubMed ID: 19662374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioartificial kidney. II. A convective flow model of a hollow fiber bioartificial renal tubule.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):153-9. PubMed ID: 10712731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.