These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23480863)

  • 1. Empirical valence bond simulations of the chemical mechanism of ATP to cAMP conversion by anthrax edema factor.
    Mones L; Tang WJ; Florián J
    Biochemistry; 2013 Apr; 52(15):2672-82. PubMed ID: 23480863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of reactant and product dissociation from the anthrax edema factor: a locally enhanced sampling and steered molecular dynamics study.
    Martínez L; Malliavin TE; Blondel A
    Proteins; 2011 May; 79(5):1649-61. PubMed ID: 21425348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP conformations and ion binding modes in the active site of anthrax edema factor: a computational analysis.
    Martínez L; Laine E; Malliavin TE; Nilges M; Blondel A
    Proteins; 2009 Dec; 77(4):971-83. PubMed ID: 19705488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and kinetic analyses of the interaction of anthrax adenylyl cyclase toxin with reaction products cAMP and pyrophosphate.
    Guo Q; Shen Y; Zhukovskaya NL; Florián J; Tang WJ
    J Biol Chem; 2004 Jul; 279(28):29427-35. PubMed ID: 15131111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthrax Edema Factor: An Ion-Adaptive Mechanism of Catalysis with Increased Transition-State Conformational Flexibility.
    Jara GE; Martínez L
    J Phys Chem B; 2016 Jul; 120(27):6504-14. PubMed ID: 27260163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The adenylyl cyclase activity of anthrax edema factor.
    Tang WJ; Guo Q
    Mol Aspects Med; 2009 Dec; 30(6):423-30. PubMed ID: 19560485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of ATP to cAMP Conversion Catalyzed by the Mammalian Adenylyl Cyclase: A Role of Magnesium Coordination Shells and Proton Wires.
    Grigorenko B; Polyakov I; Nemukhin A
    J Phys Chem B; 2020 Jan; 124(3):451-460. PubMed ID: 31881811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Mechanism of Mammalian Adenylyl Cyclase: A Computational Investigation.
    Hahn DK; Tusell JR; Sprang SR; Chu X
    Biochemistry; 2015 Oct; 54(40):6252-62. PubMed ID: 26393535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
    Guo Q; Jureller JE; Warren JT; Solomaha E; Florián J; Tang WJ
    J Biol Chem; 2008 Aug; 283(35):23836-45. PubMed ID: 18583346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2'(3')-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides.
    Taha HM; Schmidt J; Göttle M; Suryanarayana S; Shen Y; Tang WJ; Gille A; Geduhn J; König B; Dove S; Seifert R
    Mol Pharmacol; 2009 Mar; 75(3):693-703. PubMed ID: 19056899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacophore selection and redesign of non-nucleotide inhibitors of anthrax edema factor.
    Schein CH; Chen D; Ma L; Kanalas JJ; Gao J; Jimenez ME; Sower LE; Walter MA; Gilbertson SR; Peterson JW
    Toxins (Basel); 2012 Nov; 4(11):1288-300. PubMed ID: 23202316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental reaction pathway and free energy profile for hydrolysis of intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) catalyzed by phosphodiesterase-4.
    Chen X; Zhao X; Xiong Y; Liu J; Zhan CG
    J Phys Chem B; 2011 Oct; 115(42):12208-19. PubMed ID: 21973014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct interactions of 2'- and 3'-O-(N-methyl)anthraniloyl-isomers of ATP and GTP with the adenylyl cyclase toxin of Bacillus anthracis, edema factor.
    Suryanarayana S; Wang JL; Richter M; Shen Y; Tang WJ; Lushington GH; Seifert R
    Biochem Pharmacol; 2009 Aug; 78(3):224-30. PubMed ID: 19492438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation.
    Thoren KL; Worden EJ; Yassif JM; Krantz BA
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21555-60. PubMed ID: 19926859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins.
    Chen D; Menche G; Power TD; Sower L; Peterson JW; Schein CH
    Proteins; 2007 May; 67(3):593-605. PubMed ID: 17311351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtomolar detection of the anthrax edema factor in human and animal plasma.
    Duriez E; Goossens PL; Becher F; Ezan E
    Anal Chem; 2009 Jul; 81(14):5935-41. PubMed ID: 19522516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations.
    Wong KY; Gao J
    FEBS J; 2011 Jul; 278(14):2579-95. PubMed ID: 21595828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the anthrax lethal factor-substrate interaction and selectivity using docking and molecular dynamics simulations.
    Dalkas GA; Papakyriakou A; Vlamis-Gardikas A; Spyroulias GA
    Protein Sci; 2009 Aug; 18(8):1774-85. PubMed ID: 19585464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.