These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Yu C; Gao C; Lü S; Chen C; Yang J; Di X; Liu M Colloids Surf B Biointerfaces; 2014 Mar; 115():331-9. PubMed ID: 24398081 [TBL] [Abstract][Full Text] [Related]
3. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Liang J; Wu WL; Xu XD; Zhuo RX; Zhang XZ Colloids Surf B Biointerfaces; 2014 Feb; 114():398-403. PubMed ID: 24257687 [TBL] [Abstract][Full Text] [Related]
4. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Lv S; Li M; Tang Z; Song W; Sun H; Liu H; Chen X Acta Biomater; 2013 Dec; 9(12):9330-42. PubMed ID: 23958784 [TBL] [Abstract][Full Text] [Related]
5. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Han S; Liu Y; Nie X; Xu Q; Jiao F; Li W; Zhao Y; Wu Y; Chen C Small; 2012 May; 8(10):1596-606. PubMed ID: 22411637 [TBL] [Abstract][Full Text] [Related]
6. pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. Gong Z; Liu X; Wu J; Li X; Tang Z; Deng Y; Sun X; Chen K; Gao Z; Bai J Nanotechnology; 2020 Apr; 31(16):165601. PubMed ID: 31891937 [TBL] [Abstract][Full Text] [Related]
7. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Wang TW; Yeh CW; Kuan CH; Wang LW; Chen LH; Wu HC; Sun JS Acta Biomater; 2017 Aug; 58():54-66. PubMed ID: 28606810 [TBL] [Abstract][Full Text] [Related]
8. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Cui C; Xue YN; Wu M; Zhang Y; Yu P; Liu L; Zhuo RX; Huang SW Biomaterials; 2013 May; 34(15):3858-69. PubMed ID: 23452389 [TBL] [Abstract][Full Text] [Related]
9. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Wang H; Zhao Y; Wu Y; Hu YL; Nan K; Nie G; Chen H Biomaterials; 2011 Nov; 32(32):8281-90. PubMed ID: 21807411 [TBL] [Abstract][Full Text] [Related]
10. Self-assembled pH-responsive hyaluronic acid-g-poly((L)-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Qiu L; Li Z; Qiao M; Long M; Wang M; Zhang X; Tian C; Chen D Acta Biomater; 2014 May; 10(5):2024-35. PubMed ID: 24365705 [TBL] [Abstract][Full Text] [Related]
11. pH-sensitive micelles self-assembled from polymer brush (PAE- Huang X; Liao W; Zhang G; Kang S; Zhang CY Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738 [TBL] [Abstract][Full Text] [Related]
12. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Qian J; Xu M; Suo A; Xu W; Liu T; Liu X; Yao Y; Wang H Acta Biomater; 2015 Mar; 15():102-16. PubMed ID: 25545322 [TBL] [Abstract][Full Text] [Related]
13. Design and Application of Rolling Circle Amplification for a Tumor-Specific Drug Carrier. Kim JH; Jang M; Kim YJ; Ahn HJ J Med Chem; 2015 Oct; 58(19):7863-73. PubMed ID: 26361253 [TBL] [Abstract][Full Text] [Related]
14. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Xu X; Li Y; Li H; Liu R; Sheng M; He B; Gu Z Small; 2014 Mar; 10(6):1133-40. PubMed ID: 24155260 [TBL] [Abstract][Full Text] [Related]
15. MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Charbgoo F; Alibolandi M; Taghdisi SM; Abnous K; Soltani F; Ramezani M Nanomedicine; 2018 Apr; 14(3):685-697. PubMed ID: 29317345 [TBL] [Abstract][Full Text] [Related]
16. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer. Chen KJ; Chiu YL; Chen YM; Ho YC; Sung HW Biomaterials; 2011 Apr; 32(10):2586-92. PubMed ID: 21251711 [TBL] [Abstract][Full Text] [Related]
17. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
18. Single peptide ligand-functionalized uniform hollow mesoporous silica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells. Liu Y; Chen Q; Xu M; Guan G; Hu W; Liang Y; Zhao X; Qiao M; Chen D; Liu H Int J Nanomedicine; 2015; 10():1855-67. PubMed ID: 25834425 [TBL] [Abstract][Full Text] [Related]
19. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. Wang G; Maciel D; Wu Y; Rodrigues J; Shi X; Yuan Y; Liu C; Tomás H; Li Y ACS Appl Mater Interfaces; 2014 Oct; 6(19):16687-95. PubMed ID: 25167168 [TBL] [Abstract][Full Text] [Related]
20. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. Wang J; Bhattacharyya J; Mastria E; Chilkoti A J Control Release; 2017 Aug; 260():100-110. PubMed ID: 28576641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]