These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 23481183)
21. Targeting MARCO and IL37R on Immunosuppressive Macrophages in Lung Cancer Blocks Regulatory T Cells and Supports Cytotoxic Lymphocyte Function. La Fleur L; Botling J; He F; Pelicano C; Zhou C; He C; Palano G; Mezheyeuski A; Micke P; Ravetch JV; Karlsson MCI; Sarhan D Cancer Res; 2021 Feb; 81(4):956-967. PubMed ID: 33293426 [TBL] [Abstract][Full Text] [Related]
22. Control of cervicovaginal HPV-16 E7-expressing tumors by the combination of therapeutic HPV vaccination and vascular disrupting agents. Zeng Q; Peng S; Monie A; Yang M; Pang X; Hung CF; Wu TC Hum Gene Ther; 2011 Jul; 22(7):809-19. PubMed ID: 21128743 [TBL] [Abstract][Full Text] [Related]
23. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. Li H; Huang N; Zhu W; Wu J; Yang X; Teng W; Tian J; Fang Z; Luo Y; Chen M; Li Y BMC Cancer; 2018 May; 18(1):579. PubMed ID: 29783929 [TBL] [Abstract][Full Text] [Related]
24. Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be Reprogrammed with Folate-Targeted Drugs. Cresswell GM; Wang B; Kischuk EM; Broman MM; Alfar RA; Vickman RE; Dimitrov DS; Kularatne SA; Sundaram CP; Singhal S; Eruslanov EB; Crist SA; Elzey BD; Ratliff TL; Low PS Cancer Res; 2021 Feb; 81(3):671-684. PubMed ID: 33203700 [TBL] [Abstract][Full Text] [Related]
28. Molecular Repolarisation of Tumour-Associated Macrophages. van Dalen FJ; van Stevendaal MHME; Fennemann FL; Verdoes M; Ilina O Molecules; 2018 Dec; 24(1):. PubMed ID: 30577495 [TBL] [Abstract][Full Text] [Related]
29. Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy. Zhang SY; Song XY; Li Y; Ye LL; Zhou Q; Yang WB Pharmacol Res; 2020 Nov; 161():105111. PubMed ID: 33065284 [TBL] [Abstract][Full Text] [Related]
30. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers. Fujimura T; Aiba S Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32707850 [TBL] [Abstract][Full Text] [Related]
31. Suppression of serum tumour necrosis factor-alpha by thalidomide does not lead to reversal of tumour vascular collapse and anti-tumour activity of 5,6-dimethylxanthenone-4-acetic acid. Browne WL; Wilson WR; Baguley BC; Ching LM Anticancer Res; 1998; 18(6A):4409-13. PubMed ID: 9891501 [TBL] [Abstract][Full Text] [Related]
32. Macrophages are metabolically heterogeneous within the tumor microenvironment. Geeraerts X; Fernández-Garcia J; Hartmann FJ; de Goede KE; Martens L; Elkrim Y; Debraekeleer A; Stijlemans B; Vandekeere A; Rinaldi G; De Rycke R; Planque M; Broekaert D; Meinster E; Clappaert E; Bardet P; Murgaski A; Gysemans C; Nana FA; Saeys Y; Bendall SC; Laoui D; Van den Bossche J; Fendt SM; Van Ginderachter JA Cell Rep; 2021 Dec; 37(13):110171. PubMed ID: 34965415 [TBL] [Abstract][Full Text] [Related]
33. Targeting macrophages in the tumour environment to enhance the efficacy of αOX40 therapy. Gough MJ; Killeen N; Weinberg AD Immunology; 2012 Aug; 136(4):437-47. PubMed ID: 22578109 [TBL] [Abstract][Full Text] [Related]
34. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. Petty AJ; Li A; Wang X; Dai R; Heyman B; Hsu D; Huang X; Yang Y J Clin Invest; 2019 Dec; 129(12):5151-5162. PubMed ID: 31638600 [TBL] [Abstract][Full Text] [Related]
35. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models. Shi S; Wang R; Chen Y; Song H; Chen L; Huang G PLoS One; 2013; 8(6):e65757. PubMed ID: 23799045 [TBL] [Abstract][Full Text] [Related]
36. Augmenting major histocompatibility complex class I expression by murine tumors in vivo enhances antitumor immunity induced by an active immunotherapy strategy. Merritt RE; Yamada RE; Crystal RG; Korst RJ J Thorac Cardiovasc Surg; 2004 Feb; 127(2):355-64. PubMed ID: 14762342 [TBL] [Abstract][Full Text] [Related]
37. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Movahedi K; Laoui D; Gysemans C; Baeten M; Stangé G; Van den Bossche J; Mack M; Pipeleers D; In't Veld P; De Baetselier P; Van Ginderachter JA Cancer Res; 2010 Jul; 70(14):5728-39. PubMed ID: 20570887 [TBL] [Abstract][Full Text] [Related]
38. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. Choo YW; Kang M; Kim HY; Han J; Kang S; Lee JR; Jeong GJ; Kwon SP; Song SY; Go S; Jung M; Hong J; Kim BS ACS Nano; 2018 Sep; 12(9):8977-8993. PubMed ID: 30133260 [TBL] [Abstract][Full Text] [Related]
39. Nanoliposome C6-Ceramide Increases the Anti-tumor Immune Response and Slows Growth of Liver Tumors in Mice. Li G; Liu D; Kimchi ET; Kaifi JT; Qi X; Manjunath Y; Liu X; Deering T; Avella DM; Fox T; Rockey DC; Schell TD; Kester M; Staveley-O'Carroll KF Gastroenterology; 2018 Mar; 154(4):1024-1036.e9. PubMed ID: 29408569 [TBL] [Abstract][Full Text] [Related]
40. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Hsieh CH; Hsieh HC; Shih FS; Wang PW; Yang LX; Shieh DB; Wang YC Theranostics; 2021; 11(14):7072-7091. PubMed ID: 34093872 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]