These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 23481252)

  • 1. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Mar; 4():33-49. PubMed ID: 23481252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():39-55. PubMed ID: 24377114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.
    Carroll R; Lawson AB; Faes C; Kirby RS; Aregay M; Watjou K
    Spat Spatiotemporal Epidemiol; 2015; 14-15():45-54. PubMed ID: 26530822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian spatial modelling of geostatistical data using INLA and SPDE methods: A case study predicting malaria risk in Mozambique.
    Moraga P; Dean C; Inoue J; Morawiecki P; Noureen SR; Wang F
    Spat Spatiotemporal Epidemiol; 2021 Nov; 39():100440. PubMed ID: 34774255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On fitting spatio-temporal disease mapping models using approximate Bayesian inference.
    Ugarte MD; Adin A; Goicoa T; Militino AF
    Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package.
    Lee D
    Spat Spatiotemporal Epidemiol; 2020 Aug; 34():100353. PubMed ID: 32807395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network meta-analysis with integrated nested Laplace approximations.
    Sauter R; Held L
    Biom J; 2015 Nov; 57(6):1038-50. PubMed ID: 26360927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations.
    Paul M; Riebler A; Bachmann LM; Rue H; Held L
    Stat Med; 2010 May; 29(12):1325-39. PubMed ID: 20101670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laplace approximation for conditional autoregressive models for spatial data of diseases.
    Wang G
    MethodsX; 2022; 9():101872. PubMed ID: 36262319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A design-by-treatment interaction model for network meta-analysis and meta-regression with integrated nested Laplace approximations.
    Günhan BK; Friede T; Held L
    Res Synth Methods; 2018 Jun; 9(2):179-194. PubMed ID: 29193801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JAGS model specification for spatiotemporal epidemiological modelling.
    Lope DJ; Demirhan H
    Spat Spatiotemporal Epidemiol; 2024 Jun; 49():100645. PubMed ID: 38876555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental mapping.
    Huang J; Malone BP; Minasny B; McBratney AB; Triantafilis J
    Sci Total Environ; 2017 Dec; 609():621-632. PubMed ID: 28763659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying geographic regions of excess stillbirth risk in the presence of spatial and spatio-temporal heterogeneity.
    Zahrieh D; Oleson JJ; Romitti PA
    Spat Spatiotemporal Epidemiol; 2019 Jun; 29():97-109. PubMed ID: 31128635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online relative risks/rates estimation in spatial and spatio-temporal disease mapping.
    Adin A; Goicoa T; Ugarte MD
    Comput Methods Programs Biomed; 2019 Apr; 172():103-116. PubMed ID: 30846296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible modelling of spatial variation in agricultural field trials with the R package INLA.
    Selle ML; Steinsland I; Hickey JM; Gorjanc G
    Theor Appl Genet; 2019 Dec; 132(12):3277-3293. PubMed ID: 31535162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions.
    Roy V; Evangelou E; Zhu Z
    Biometrics; 2016 Mar; 72(1):289-98. PubMed ID: 26331903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations.
    Riebler A; Held L
    Biom J; 2017 May; 59(3):531-549. PubMed ID: 28139001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of computational algorithms for the Bayesian analysis of clinical trials.
    Chen Z; Berger JS; Castellucci LA; Farkouh M; Goligher EC; Hade EM; Hunt BJ; Kornblith LZ; Lawler PR; Leifer ES; Lorenzi E; Neal MD; Zarychanski R; Heath A
    Clin Trials; 2024 Dec; 21(6):689-700. PubMed ID: 38752434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation.
    Seppä K; Rue H; Hakulinen T; Läärä E; Sillanpää MJ; Pitkäniemi J
    Stat Med; 2019 Feb; 38(5):778-791. PubMed ID: 30334278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-inflated spatio-temporal models for disease mapping.
    Torabi M
    Biom J; 2017 May; 59(3):430-444. PubMed ID: 28187237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.