These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Chirality-induced spin selectivity in functionalized carbon nanotube networks: The role of spin-orbit coupling. Firouzeh S; Illescas-Lopez S; Hossain MA; Cuerva JM; Álvarez de Cienfuegos L; Pramanik S J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37466230 [TBL] [Abstract][Full Text] [Related]
5. Coupling of spin and orbital motion of electrons in carbon nanotubes. Kuemmeth F; Ilani S; Ralph DC; McEuen PL Nature; 2008 Mar; 452(7186):448-52. PubMed ID: 18368113 [TBL] [Abstract][Full Text] [Related]
6. Spin-orbit interaction in bent carbon nanotubes: resonant spin transitions. Osika EN; Szafran B J Phys Condens Matter; 2015 Nov; 27(43):435301. PubMed ID: 26447487 [TBL] [Abstract][Full Text] [Related]
7. Theoretical determination of the zero-field splitting in copper acetate monohydrate. Maurice R; Sivalingam K; Ganyushin D; Guihéry N; de Graaf C; Neese F Inorg Chem; 2011 Jul; 50(13):6229-36. PubMed ID: 21634387 [TBL] [Abstract][Full Text] [Related]
8. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Shcherbakov D; Stepanov P; Memaran S; Wang Y; Xin Y; Yang J; Wei K; Baumbach R; Zheng W; Watanabe K; Taniguchi T; Bockrath M; Smirnov D; Siegrist T; Windl W; Balicas L; Lau CN Sci Adv; 2021 Jan; 7(5):. PubMed ID: 33514554 [TBL] [Abstract][Full Text] [Related]
9. Strong and Tunable Spin-Orbit Coupling in a Two-Dimensional Hole Gas in Ionic-Liquid Gated Diamond Devices. Akhgar G; Klochan O; Willems van Beveren LH; Edmonds MT; Maier F; Spencer BJ; McCallum JC; Ley L; Hamilton AR; Pakes CI Nano Lett; 2016 Jun; 16(6):3768-73. PubMed ID: 27186800 [TBL] [Abstract][Full Text] [Related]
10. Conductance through a helical state in an Indium antimonide nanowire. Kammhuber J; Cassidy MC; Pei F; Nowak MP; Vuik A; Gül Ö; Car D; Plissard SR; Bakkers EPAM; Wimmer M; Kouwenhoven LP Nat Commun; 2017 Sep; 8(1):478. PubMed ID: 28883423 [TBL] [Abstract][Full Text] [Related]
11. Reversible engineering of spin-orbit splitting in monolayer MoS Liang X; Qin C; Gao Y; Han S; Zhang G; Chen R; Hu J; Xiao L; Jia S Nanoscale; 2021 May; 13(19):8966-8975. PubMed ID: 33970179 [TBL] [Abstract][Full Text] [Related]
12. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Pályi A; Struck PR; Rudner M; Flensberg K; Burkard G Phys Rev Lett; 2012 May; 108(20):206811. PubMed ID: 23003173 [TBL] [Abstract][Full Text] [Related]
13. Thermoelectric unipolar spin battery in a suspended carbon nanotube. Cao Z; Fang TF; He WX; Luo HG J Phys Condens Matter; 2017 Apr; 29(16):165302. PubMed ID: 28234239 [TBL] [Abstract][Full Text] [Related]
15. The interplay between Zeeman splitting and spin-orbit coupling in InAs nanowires. Kim BK; Choi SJ; Shin JC; Kim M; Ahn YH; Sim HS; Kim JJ; Bae MH Nanoscale; 2018 Dec; 10(48):23175-23181. PubMed ID: 30516777 [TBL] [Abstract][Full Text] [Related]
16. Decays of Majorana or Andreev Oscillations Induced by Steplike Spin-Orbit Coupling. Cao Z; Zhang H; Lü HF; He WX; Lu HZ; Xie XC Phys Rev Lett; 2019 Apr; 122(14):147701. PubMed ID: 31050472 [TBL] [Abstract][Full Text] [Related]
17. Kondo effect in carbon nanotube quantum dots with spin-orbit coupling. Fang TF; Zuo W; Luo HG Phys Rev Lett; 2008 Dec; 101(24):246805. PubMed ID: 19113647 [TBL] [Abstract][Full Text] [Related]