These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23481384)

  • 1. Photon-enhanced thermionic emission from heterostructures with low interface recombination.
    Schwede JW; Sarmiento T; Narasimhan VK; Rosenthal SJ; Riley DC; Schmitt F; Bargatin I; Sahasrabuddhe K; Howe RT; Harris JS; Melosh NA; Shen ZX
    Nat Commun; 2013; 4():1576. PubMed ID: 23481384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon-enhanced thermionic emission for solar concentrator systems.
    Schwede JW; Bargatin I; Riley DC; Hardin BE; Rosenthal SJ; Sun Y; Schmitt F; Pianetta P; Howe RT; Shen ZX; Melosh NA
    Nat Mater; 2010 Sep; 9(9):762-7. PubMed ID: 20676086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor thermionics for next generation solar cells: photon enhanced or pure thermionic?
    Rahman E; Nojeh A
    Nat Commun; 2021 Jul; 12(1):4622. PubMed ID: 34330924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation.
    Li W; Wang H; Hao Y
    Sci Bull (Beijing); 2017 Oct; 62(20):1380-1387. PubMed ID: 36659373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentrated thermionic solar cells using graphene as the collector: theoretical efficiency limit and design rules.
    Zhang X; Sin Ang Y; Ang LK; Chen J
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34710863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opto-thermionic refrigeration in semiconductor heterostructures.
    Mal'shukov AG; Chao KA
    Phys Rev Lett; 2001 Jun; 86(24):5570-3. PubMed ID: 11415303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel concepts and nanostructured materials for thermionic-based solar and thermal energy converters.
    Bellucci A; Girolami M; Mastellone M; Orlando S; Polini R; Santagata A; Serpente V; Valentini V; Trucchi DM
    Nanotechnology; 2021 Jan; 32(2):024002. PubMed ID: 32957094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime.
    Zhou C; Zhang XT; Zheng K; Chen PP; Matsumura S; Lu W; Zou J
    Nanoscale; 2019 Apr; 11(14):6859-6865. PubMed ID: 30912781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure.
    Bescond M; Logoteta D; Michelini F; Cavassilas N; Yan T; Yangui A; Lannoo M; Hirakawa K
    J Phys Condens Matter; 2018 Feb; 30(6):064005. PubMed ID: 29297468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior Photo-thermionic electron Emission from Illuminated Phosphorene Surface.
    Madas S; Mishra SK; Kahaly S; Kahaly MU
    Sci Rep; 2019 Jul; 9(1):10307. PubMed ID: 31312007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of graphene aerogel and application in photon-enhanced thermionic emission.
    Guo S; Zhao H; Xu Y; Pei X; Li S; Fu Y; He H; Shen X
    RSC Adv; 2022 Apr; 12(18):11113-11118. PubMed ID: 35425037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission.
    Vahdani Moghaddam M; Yaghoobi P; Sawatzky GA; Nojeh A
    ACS Nano; 2015 Apr; 9(4):4064-9. PubMed ID: 25769341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating Thermionic Emission with Specific Surface Reconstructions in a <100> Hydrogenated Single-Crystal Diamond.
    Dominguez-Andrade H; Anaya J; Croot A; Cattelan M; Twitchen DJ; Kuball M; Fox NA
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26534-26542. PubMed ID: 32463648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage.
    Limpert S; Burke A; Chen IJ; Anttu N; Lehmann S; Fahlvik S; Bremner S; Conibeer G; Thelander C; Pistol ME; Linke H
    Nanotechnology; 2017 Oct; 28(43):434001. PubMed ID: 28857751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-trapping in photon enhanced thermionic emitters.
    Buencuerpo J; Llorens JM; Zilio P; Raja W; Cunha J; Alabastri A; Zaccaria RP; Martí A; Versloot T
    Opt Express; 2015 Sep; 23(19):A1220-35. PubMed ID: 26406751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices.
    Chen IJ; Limpert S; Metaferia W; Thelander C; Samuelson L; Capasso F; Burke AM; Linke H
    Nano Lett; 2020 Jun; 20(6):4064-4072. PubMed ID: 32347731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Electron Emission Performance and Air-Surface Stability in ScO-Terminated Diamond for Thermionic Energy Converters.
    Zulkharnay R; Fox NA; May PW
    Small; 2024 Sep; ():e2405408. PubMed ID: 39221639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-thermionic effect in vertical graphene heterostructures.
    Massicotte M; Schmidt P; Vialla F; Watanabe K; Taniguchi T; Tielrooij KJ; Koppens FH
    Nat Commun; 2016 Jul; 7():12174. PubMed ID: 27412308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Resolved Structural Measurement of Thermal Resistance across a Buried Semiconductor Heterostructure Interface.
    Lee J; Jo W; Kwon JH; Griffin B; Cho BG; Landahl EC; Lee S
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.