These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23481680)

  • 1. Challenges and opportunities in restoring function after paralysis.
    Peckham PH; Kilgore KL
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):602-9. PubMed ID: 23481680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprosthetic applications of electrical stimulation.
    Grill WM; Kirsch RF
    Assist Technol; 2000; 12(1):6-20. PubMed ID: 11067578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys.
    Barra B; Conti S; Perich MG; Zhuang K; Schiavone G; Fallegger F; Galan K; James ND; Barraud Q; Delacombaz M; Kaeser M; Rouiller EM; Milekovic T; Lacour S; Bloch J; Courtine G; Capogrosso M
    Nat Neurosci; 2022 Jul; 25(7):924-934. PubMed ID: 35773543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-controlled muscle stimulation for the restoration of motor function.
    Ethier C; Miller LE
    Neurobiol Dis; 2015 Nov; 83():180-90. PubMed ID: 25447224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis.
    Grahn PJ; Mallory GW; Berry BM; Hachmann JT; Lobel DA; Lujan JL
    Front Neurosci; 2014; 8():296. PubMed ID: 25278830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of grasp following paralysis through brain-controlled stimulation of muscles.
    Ethier C; Oby ER; Bauman MJ; Miller LE
    Nature; 2012 May; 485(7398):368-71. PubMed ID: 22522928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.
    Lee B; Liu CY; Apuzzo ML
    World Neurosurg; 2013; 79(3-4):457-71. PubMed ID: 23333985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury.
    Torregrosa T; Koppes RA
    Cells Tissues Organs; 2016; 202(1-2):6-22. PubMed ID: 27701161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural prostheses.
    Prochazka A; Mushahwar VK; McCreery DB
    J Physiol; 2001 May; 533(Pt 1):99-109. PubMed ID: 11351018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles.
    Pohlmeyer EA; Oby ER; Perreault EJ; Solla SA; Kilgore KL; Kirsch RF; Miller LE
    PLoS One; 2009 Jun; 4(6):e5924. PubMed ID: 19526055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BION system for distributed neural prosthetic interfaces.
    Loeb GE; Peck RA; Moore WH; Hood K
    Med Eng Phys; 2001 Jan; 23(1):9-18. PubMed ID: 11344003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic.
    Charkhkar H; Christie BP; Pinault GJ; Tyler DJ; Triolo RJ
    J Neurosci Methods; 2019 Dec; 328():108414. PubMed ID: 31472187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. At the interface: convergence of neural regeneration and neural prostheses for restoration of function.
    Grill WM; McDonald JW; Peckham PH; Heetderks W; Kocsis J; Weinrich M
    J Rehabil Res Dev; 2001; 38(6):633-9. PubMed ID: 11767971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional electrical stimulation for neuromuscular applications.
    Peckham PH; Knutson JS
    Annu Rev Biomed Eng; 2005; 7():327-60. PubMed ID: 16004574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive Reactivation of Motor Descending Control after Paralysis.
    Gerasimenko YP; Lu DC; Modaber M; Zdunowski S; Gad P; Sayenko DG; Morikawa E; Haakana P; Ferguson AR; Roy RR; Edgerton VR
    J Neurotrauma; 2015 Dec; 32(24):1968-80. PubMed ID: 26077679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cord injury: present and future therapeutic devices and prostheses.
    Giszter SF
    Neurotherapeutics; 2008 Jan; 5(1):147-62. PubMed ID: 18164494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current challenges to the clinical translation of brain machine interface technology.
    Lu CW; Patil PG; Chestek CA
    Int Rev Neurobiol; 2012; 107():137-60. PubMed ID: 23206681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges.
    Bensmaia SJ; Miller LE
    Nat Rev Neurosci; 2014 May; 15(5):313-25. PubMed ID: 24739786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel command signal for motor neuroprosthetic control.
    Moss CW; Kilgore KL; Peckham PH
    Neurorehabil Neural Repair; 2011; 25(9):847-54. PubMed ID: 21693772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.