These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23481681)
1. A robust reference signal generator for synchronized ventricular assist devices. Amacher R; Ochsner G; Ferreira A; Vandenberghe S; Schmid Daners M IEEE Trans Biomed Eng; 2013 Aug; 60(8):2174-83. PubMed ID: 23481681 [TBL] [Abstract][Full Text] [Related]
2. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. Ochsner G; Amacher R; Amstutz A; Plass A; Schmid Daners M; Tevaearai H; Vandenberghe S; Wilhelm MJ; Guzzella L IEEE Trans Biomed Eng; 2013 Feb; 60(2):507-16. PubMed ID: 23204266 [TBL] [Abstract][Full Text] [Related]
3. High-frequency operation of a pulsatile VAD - a simulation study. Rebholz M; Amacher R; Petrou A; Meboldt M; Schmid Daners M Biomed Tech (Berl); 2017 Apr; 62(2):161-170. PubMed ID: 27505081 [TBL] [Abstract][Full Text] [Related]
4. Implantable physiologic controller for left ventricular assist devices with telemetry capability. Asgari SS; Bonde P J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267 [TBL] [Abstract][Full Text] [Related]
5. A pulsatile control algorithm of continuous-flow pump for heart recovery. Gao B; Chang Y; Gu K; Zeng Y; Liu Y ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238 [TBL] [Abstract][Full Text] [Related]
6. Windkessel model of hemodynamic state supported by a pulsatile ventricular assist device in premature ventricle contraction. Her K; Kim JY; Lim KM; Choi SW Biomed Eng Online; 2018 Feb; 17(1):18. PubMed ID: 29394944 [TBL] [Abstract][Full Text] [Related]
7. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques. Yu YC; Simaan MA; Mushi SE; Zorn NV IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977 [TBL] [Abstract][Full Text] [Related]
8. A mathematical model to evaluate control strategies for mechanical circulatory support. Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561 [TBL] [Abstract][Full Text] [Related]
9. Control strategies for afterload reduction with an artificial vasculature device. Giridharan GA; Cheng RC; Glower JS; Ewert DL; Sobieski MA; Slaughter MS; Koenig SC ASAIO J; 2012; 58(4):353-62. PubMed ID: 22635010 [TBL] [Abstract][Full Text] [Related]
10. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169 [TBL] [Abstract][Full Text] [Related]
11. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168 [TBL] [Abstract][Full Text] [Related]
12. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799 [TBL] [Abstract][Full Text] [Related]
13. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery. Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446 [TBL] [Abstract][Full Text] [Related]
14. Specification of supervisory control systems for ventricular assist devices. Cavalheiro AC; Santos Fo DJ; Andrade A; Cardoso JR; Horikawa O; Bock E; Fonseca J Artif Organs; 2011 May; 35(5):465-70. PubMed ID: 21595713 [TBL] [Abstract][Full Text] [Related]
15. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device. Shi Y; Korakianitis T Artif Organs; 2006 Dec; 30(12):929-48. PubMed ID: 17181834 [TBL] [Abstract][Full Text] [Related]
17. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011. Holman WL; Naftel DC; Eckert CE; Kormos RL; Goldstein DJ; Kirklin JK J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245 [TBL] [Abstract][Full Text] [Related]
18. Simulation evaluation of cardiac assist devices. Bai J; Bing Z Methods Inf Med; 2000 Jun; 39(2):191-5. PubMed ID: 10892262 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop. Timms D; Hayne M; Tan A; Pearcy M Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286 [TBL] [Abstract][Full Text] [Related]
20. Cardiac prosthesis as an advanced surgical therapy for end-stage cardiac patients: current status and future perspectives. Takatani S J Med Dent Sci; 2000 Sep; 47(3):151-65. PubMed ID: 12160228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]