BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23481782)

  • 1. Interplay between transparency and efficiency in dye sensitized solar cells.
    Tagliaferro R; Colonna D; Brown TM; Reale A; Di Carlo A
    Opt Express; 2013 Feb; 21(3):3235-42. PubMed ID: 23481782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.
    Hoke ET; Hardin BE; McGehee MD
    Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells.
    Fu NQ; Fang YY; Duan YD; Zhou XW; Xiao XR; Lin Y
    ACS Nano; 2012 Nov; 6(11):9596-605. PubMed ID: 23039879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.
    Sobuś J; Ziółek M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14116-26. PubMed ID: 24901747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells.
    Wu D; Wang Y; Dong H; Zhu F; Gao S; Jiang K; Fu L; Zhang J; Xu D
    Nanoscale; 2013 Jan; 5(1):324-30. PubMed ID: 23165289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells.
    Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenothiazine-sensitized organic solar cells: effect of dye anchor group positioning on the cell performance.
    Hart AS; K C CB; Subbaiyan NK; Karr PA; D'Souza F
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5813-20. PubMed ID: 23043502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antireflective coatings for multijunction solar cells under wide-angle ray bundles.
    Victoria M; Domínguez C; Antón I; Sala G
    Opt Express; 2012 Mar; 20(7):8136-47. PubMed ID: 22453483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.
    Mayer A; Gaouyat L; Nicolay D; Carletti T; Deparis O
    Opt Express; 2014 Oct; 22 Suppl 6():A1641-9. PubMed ID: 25607321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved dye sensitized solar cell performance in larger cell size by using TiO₂ nanotubes.
    Zhang Y; Khamwannah J; Kim H; Noh SY; Yang H; Jin S
    Nanotechnology; 2013 Feb; 24(4):045401. PubMed ID: 23299151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z
    Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.
    Mahpeykar SM; Xiong Q; Wang X
    Opt Express; 2014 Oct; 22 Suppl 6():A1576-88. PubMed ID: 25607315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of a conjugated-polymer-sensitised solar cell: the effect of interfacial structure.
    Drumm DW; Bilic A; Tachibana Y; Miller A; Russo SP
    Phys Chem Chem Phys; 2015 Jun; 17(22):14489-94. PubMed ID: 25866851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency dye-sensitized solar cell with three-dimensional photoanode.
    Tétreault N; Arsenault E; Heiniger LP; Soheilnia N; Brillet J; Moehl T; Zakeeruddin S; Ozin GA; Grätzel M
    Nano Lett; 2011 Nov; 11(11):4579-84. PubMed ID: 21961905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-modified scattering properties of silicon nanostructures for solar energy applications.
    Fofang NT; Luk TS; Okandan M; Nielson GN; Brener I
    Opt Express; 2013 Feb; 21(4):4774-82. PubMed ID: 23482011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application.
    Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST
    ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells.
    He Z; Guai G; Liu J; Guo C; Loo JS; Li CM; Tan TT
    Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of spectral non-idealities in the design of solar thermophotovoltaics.
    Lenert A; Nam Y; Bierman DM; Wang EN
    Opt Express; 2014 Oct; 22 Suppl 6():A1604-18. PubMed ID: 25607318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.