These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23481824)

  • 101. Electric Conductivity and Optical Absorption in Metals (Supplementary).
    Hall EH
    Proc Natl Acad Sci U S A; 1931 Jul; 17(7):427-30. PubMed ID: 16577378
    [No Abstract]   [Full Text] [Related]  

  • 102. Electric Conductivity and Optical Absorption of Metals.
    Hall EH
    Proc Natl Acad Sci U S A; 1928 Oct; 14(10):802-11. PubMed ID: 16587412
    [No Abstract]   [Full Text] [Related]  

  • 103. Electric Conductivity and Optical Absorption in Metals, Once More.
    Hall EH
    Proc Natl Acad Sci U S A; 1931 Jun; 17(6):392-401. PubMed ID: 16587642
    [No Abstract]   [Full Text] [Related]  

  • 104. Proposal for a superconducting photon number resolving detector with large dynamic range.
    Jahanmirinejad S; Fiore A
    Opt Express; 2012 Feb; 20(5):5017-28. PubMed ID: 22418306
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system.
    Miki S; Takeda M; Fujiwara M; Sasaki M; Wang Z
    Opt Express; 2009 Dec; 17(26):23557-64. PubMed ID: 20052064
    [TBL] [Abstract][Full Text] [Related]  

  • 106. High resolution direct measurement of temperature distribution in silicon nanophotonics devices.
    Tzur M; Desiatov B; Goykhman I; Grajower M; Levy U
    Opt Express; 2013 Dec; 21(24):29195-204. PubMed ID: 24514471
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Modified detector tomography technique applied to a superconducting multiphoton nanodetector.
    Renema JJ; Frucci G; Zhou Z; Mattioli F; Gaggero A; Leoni R; de Dood MJ; Fiore A; van Exter MP
    Opt Express; 2012 Jan; 20(3):2806-13. PubMed ID: 22330516
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Near-field optics: from subwavelength illumination to nanometric shadowing.
    Lewis A; Taha H; Strinkovski A; Manevitch A; Khatchatouriants A; Dekhter R; Ammann E
    Nat Biotechnol; 2003 Nov; 21(11):1378-86. PubMed ID: 14595366
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Optics at the nanometre scale.
    Pohl DW
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):701-17. PubMed ID: 15306489
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Applications of scanning probe-atomic force microscopy in nanobioelectronics.
    Choi E; Kim A; Son H; Pyo SG
    J Nanosci Nanotechnol; 2014 Jan; 14(1):924-31. PubMed ID: 24730309
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Scanning near-field optical microscopy.
    Vobornik D; Vobornik S
    Bosn J Basic Med Sci; 2008 Feb; 8(1):63-71. PubMed ID: 18318675
    [TBL] [Abstract][Full Text] [Related]  

  • 112. An absorption-based superconducting nano-detector as a near-field optical probe.
    Wang Q; de Dood MJ
    Opt Express; 2013 Feb; 21(3):3682-92. PubMed ID: 23481824
    [TBL] [Abstract][Full Text] [Related]  

  • 113.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 114.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 115.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 116.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 117.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 118.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 6.