These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 23482031)

  • 41. Compression of picosecond pulses from a thin-disk laser to 30fs at 4W average power.
    Chen BH; Kretschmar M; Ehberger D; Blumenstein A; Simon P; Baum P; Nagy T
    Opt Express; 2018 Feb; 26(4):3861-3869. PubMed ID: 29475364
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hollow beam supercontinuum generation by the supermode superposition in a GeO2 doped triangular-core photonic crystal fiber.
    Zhang XB; Zhu X; Chen X; Li HQ; Peng JG; Dai NL; Li JY
    Opt Express; 2012 Aug; 20(18):19799-805. PubMed ID: 23037032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dispersive pulse compression in hollow-core photonic bandgap fibers.
    Laegsgaard J; Roberts PJ
    Opt Express; 2008 Jun; 16(13):9628-44. PubMed ID: 18575531
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-photon microscopy using an Yb(3+)-doped fiber laser with variable pulse widths.
    Kim DU; Song H; Song W; Kwon HS; Sung M; Kim DY
    Opt Express; 2012 May; 20(11):12341-9. PubMed ID: 22714221
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter.
    Krcmarík D; Slavík R; Park Y; Azaña J
    Opt Express; 2009 Apr; 17(9):7074-87. PubMed ID: 19399083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.
    Shephard JD; Couny F; Russell PS; Jones JD; Knight JC; Hand DP
    Appl Opt; 2005 Jul; 44(21):4582-8. PubMed ID: 16047910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.
    Mak KF; Seidel M; Pronin O; Frosz MH; Abdolvand A; Pervak V; Apolonski A; Krausz F; Travers JC; Russell PS
    Opt Lett; 2015 Apr; 40(7):1238-41. PubMed ID: 25831302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Millijoule-level Yb-doped photonic crystal fiber laser passively Q-switched with AlGaInAs quantum wells.
    Zhuang WZ; Huang WC; Chiang PY; Su KW; Huang KF; Chen YF
    Opt Express; 2010 Dec; 18(26):27910-5. PubMed ID: 21197064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6.
    Rothhardt J; Hädrich S; Limpert J; Tünnermann A
    Opt Express; 2009 Feb; 17(4):2508-17. PubMed ID: 19219154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level.
    Beirow F; Eckerle M; Dannecker B; Dietrich T; Ahmed MA; Graf T
    Opt Express; 2018 Feb; 26(4):4401-4410. PubMed ID: 29475290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectral-temporal dynamics of high power Raman picosecond pulse using H
    Benoît A; Ilinova E; Beaudou B; Debord B; Gérôme F; Benabid F
    Opt Lett; 2017 Oct; 42(19):3896-3899. PubMed ID: 28957155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser.
    Baumgartl M; Jansen F; Stutzki F; Jauregui C; Ortaç B; Limpert J; Tünnermann A
    Opt Lett; 2011 Jan; 36(2):244-6. PubMed ID: 21263514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. All-fiber based amplification of 40 ps pulses from a gain-switched laser diode.
    Kanzelmeyer S; Sayinc H; Theeg T; Frede M; Neumann J; Kracht D
    Opt Express; 2011 Jan; 19(3):1854-9. PubMed ID: 21369000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.
    Rothhardt J; Hädrich S; Röser F; Limpert J; Tünnermann A
    Opt Express; 2008 Jun; 16(12):8981-8. PubMed ID: 18545609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment.
    Saraceno CJ; Emaury F; Heckl OH; Baer CR; Hoffmann M; Schriber C; Golling M; Südmeyer T; Keller U
    Opt Express; 2012 Oct; 20(21):23535-41. PubMed ID: 23188316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber.
    Gebhardt M; Gaida C; Hädrich S; Stutzki F; Jauregui C; Limpert J; Tünnermann A
    Opt Lett; 2015 Jun; 40(12):2770-3. PubMed ID: 26076258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual-gain SESAM modelocked thin disk laser based on Yb:Lu₂O₃ and Yb:Sc₂O₃.
    Schriber C; Emaury F; Diebold A; Link S; Golling M; Beil K; Kränkel C; Saraceno CJ; Südmeyer T; Keller U
    Opt Express; 2014 Aug; 22(16):18979-86. PubMed ID: 25320984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonlinear pulse compression in a multi-pass cell.
    Schulte J; Sartorius T; Weitenberg J; Vernaleken A; Russbueldt P
    Opt Lett; 2016 Oct; 41(19):4511-4514. PubMed ID: 27749868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.
    Debord B; Alharbi M; Vincetti L; Husakou A; Fourcade-Dutin C; Hoenninger C; Mottay E; Gérôme F; Benabid F
    Opt Express; 2014 May; 22(9):10735-46. PubMed ID: 24921775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Femtosecond thin-disk laser with 141 W of average power.
    Baer CR; Kränkel C; Saraceno CJ; Heckl OH; Golling M; Peters R; Petermann K; Südmeyer T; Huber G; Keller U
    Opt Lett; 2010 Jul; 35(13):2302-4. PubMed ID: 20596227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.