These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23482291)

  • 1. Optimizing two-level hierarchical particles for thin-film solar cells.
    Zhou S; Hunang X; Li Q; Xie YM
    Opt Express; 2013 Mar; 21 Suppl 2():A285-94. PubMed ID: 23482291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells.
    Madzharov D; Dewan R; Knipp D
    Opt Express; 2011 Mar; 19 Suppl 2():A95-A107. PubMed ID: 21445224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric back scattering patterns for light trapping in thin-film Si solar cells.
    van Lare M; Lenzmann F; Polman A
    Opt Express; 2013 Sep; 21(18):20738-46. PubMed ID: 24103947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping.
    Wang P; Menon R
    Opt Express; 2012 Jan; 20(2):1849-55. PubMed ID: 22274529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing optimized nano textures for thin-film silicon solar cells.
    Jäger K; Fischer M; van Swaaij RA; Zeman M
    Opt Express; 2013 Jul; 21 Suppl 4():A656-68. PubMed ID: 24104492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells.
    Wang E; White TP; Catchpole KR
    Opt Express; 2012 Jun; 20(12):13226-37. PubMed ID: 22714351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings.
    Naqavi A; Söderström K; Haug FJ; Paeder V; Scharf T; Herzig HP; Ballif C
    Opt Express; 2011 Jan; 19(1):128-40. PubMed ID: 21263549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance.
    Desta D; Ram SK; Rizzoli R; Bellettato M; Summonte C; Jeppesen BR; Jensen PB; Tsao YC; Wiggers H; Pereira RN; Balling P; Larsen AN
    Nanoscale; 2016 Jun; 8(23):12035-46. PubMed ID: 27244247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.
    Zanotto S; Liscidini M; Andreani LC
    Opt Express; 2010 Mar; 18(5):4260-74. PubMed ID: 20389438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells.
    Wang D; Su G
    Sci Rep; 2014 Nov; 4():7165. PubMed ID: 25418477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells.
    Shi Y; Wang X; Liu W; Yang T; Ma J; Yang F
    Opt Express; 2014 Aug; 22(17):20473-80. PubMed ID: 25321254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells.
    Kowalczewski P; Liscidini M; Andreani LC
    Opt Lett; 2012 Dec; 37(23):4868-70. PubMed ID: 23202073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of light scattering in dye-sensitized solar cells.
    Zhang Q; Myers D; Lan J; Jenekhe SA; Cao G
    Phys Chem Chem Phys; 2012 Nov; 14(43):14982-98. PubMed ID: 23042288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles.
    Chen Y; Han W; Yang F
    Opt Lett; 2013 Oct; 38(19):3973-5. PubMed ID: 24081102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics.
    Wang P; Menon R
    Opt Express; 2013 Mar; 21(5):6274-85. PubMed ID: 23482196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.