BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23482465)

  • 1. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis.
    Chen Y; Chauhan SK; Lee HS; Stevenson W; Schaumburg CS; Sadrai Z; Saban DR; Kodati S; Stern ME; Dana R
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2457-64. PubMed ID: 23482465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of effector T cells in dry eye disease.
    El Annan J; Chauhan SK; Ecoiffier T; Zhang Q; Saban DR; Dana R
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3802-7. PubMed ID: 19339740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of toll-like receptor 4 contributes to corneal inflammation in experimental dry eye disease.
    Lee HS; Hattori T; Park EY; Stevenson W; Chauhan SK; Dana R
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5632-40. PubMed ID: 22789921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desiccating stress-induced disruption of ocular surface immune tolerance drives dry eye disease.
    Guzmán M; Keitelman I; Sabbione F; Trevani AS; Giordano MN; Galletti JG
    Clin Exp Immunol; 2016 May; 184(2):248-56. PubMed ID: 26690299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.
    Guzmán M; Keitelman I; Sabbione F; Trevani AS; Giordano MN; Galletti JG
    Exp Eye Res; 2016 Oct; 151():19-22. PubMed ID: 27443502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Female-Specific Downregulation of Tissue Polymorphonuclear Neutrophils Drives Impaired Regulatory T Cell and Amplified Effector T Cell Responses in Autoimmune Dry Eye Disease.
    Gao Y; Min K; Zhang Y; Su J; Greenwood M; Gronert K
    J Immunol; 2015 Oct; 195(7):3086-99. PubMed ID: 26324767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CCR6/CCL20 axis mediates Th17 cell migration to the ocular surface in dry eye disease.
    Dohlman TH; Chauhan SK; Kodati S; Hua J; Chen Y; Omoto M; Sadrai Z; Dana R
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4081-91. PubMed ID: 23702781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T
    Seo KY; Kitamura K; Han SJ; Kelsall B
    J Allergy Clin Immunol; 2018 Jul; 142(1):96-108.e2. PubMed ID: 28958903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraorbital lacrimal gland excision: a reproducible model of severe aqueous tear-deficient dry eye disease.
    Stevenson W; Chen Y; Lee SM; Lee HS; Hua J; Dohlman T; Shiang T; Dana R
    Cornea; 2014 Dec; 33(12):1336-41. PubMed ID: 25255136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tear production and ocular surface changes in experimental dry eye after elimination of desiccating stress.
    Yoon KC; Ahn KY; Choi W; Li Z; Choi JS; Lee SH; Park SH
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7267-73. PubMed ID: 21849424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell-mediated pathway.
    Zheng X; de Paiva CS; Li DQ; Farley WJ; Pflugfelder SC
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3083-91. PubMed ID: 20130281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression.
    Chauhan SK; El Annan J; Ecoiffier T; Goyal S; Zhang Q; Saban DR; Dana R
    J Immunol; 2009 Feb; 182(3):1247-52. PubMed ID: 19155469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of T-cell chemotaxis by programmed death-ligand 1 (PD-L1) in dry eye-associated corneal inflammation.
    El Annan J; Goyal S; Zhang Q; Freeman GJ; Sharpe AH; Dana R
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3418-23. PubMed ID: 20019373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Dry Eye Disease on the Kinetics of Lacrimal Gland Dendritic Cells as Visualized by Intravital Multi-Photon Microscopy.
    Ortiz G; Chao C; Jamali A; Seyed-Razavi Y; Kenyon B; Harris DL; Zoukhri D; Hamrah P
    Front Immunol; 2020; 11():1713. PubMed ID: 32903439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mouse model of keratoconjunctivitis sicca.
    Dursun D; Wang M; Monroy D; Li DQ; Lokeshwar BL; Stern ME; Pflugfelder SC
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):632-8. PubMed ID: 11867577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Dendritic Cells in Dry Eye Mouse Model.
    Maruoka S; Inaba M; Ogata N
    Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3269-3277. PubMed ID: 29971446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIF1α-mediated TRAIL Expression Regulates Lacrimal Gland Inflammation in Dry Eye Disease.
    Ji YW; Lee JH; Choi EY; Kang HG; Seo KY; Song JS; Kim HC; Lee HK
    Invest Ophthalmol Vis Sci; 2020 Jan; 61(1):3. PubMed ID: 31995154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCR7 is critical for the induction and maintenance of Th17 immunity in dry eye disease.
    Kodati S; Chauhan SK; Chen Y; Dohlman TH; Karimian P; Saban D; Dana R
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):5871-7. PubMed ID: 25139737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.
    Coursey TG; Gandhi NB; Volpe EA; Pflugfelder SC; de Paiva CS
    PLoS One; 2013; 8(11):e78508. PubMed ID: 24223818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response profiles to a controlled adverse desiccating environment based on clinical and tear molecule changes.
    Fernández I; López-Miguel A; Enríquez-de-Salamanca A; Tesón M; Stern ME; González-García MJ; Calonge M
    Ocul Surf; 2019 Jul; 17(3):502-515. PubMed ID: 30936038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.