These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23482635)

  • 1. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy.
    Righi V; Constantinou C; Mintzopoulos D; Khan N; Mupparaju SP; Rahme LG; Swartz HM; Szeto HH; Tompkins RG; Tzika AA
    FASEB J; 2013 Jun; 27(6):2521-30. PubMed ID: 23482635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burn injury causes mitochondrial dysfunction in skeletal muscle.
    Padfield KE; Astrakas LG; Zhang Q; Gopalan S; Dai G; Mindrinos MN; Tompkins RG; Rahme LG; Tzika AA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5368-73. PubMed ID: 15809440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.
    Tzika AA; Mintzopoulos D; Padfield K; Wilhelmy J; Mindrinos MN; Yu H; Cao H; Zhang Q; Astrakas LG; Zhang J; Yu YM; Rahme LG; Tompkins RG
    Int J Mol Med; 2008 Feb; 21(2):201-8. PubMed ID: 18204786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury.
    Constantinou C; Apidianakis Y; Psychogios N; Righi V; Mindrinos MN; Khan N; Swartz HM; Szeto HH; Tompkins RG; Rahme LG; Tzika AA
    Int J Mol Med; 2016 Feb; 37(2):299-308. PubMed ID: 26648055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mitochondria-targeted antioxidant peptide ameliorates burn-induced apoptosis and endoplasmic reticulum stress in the skeletal muscle of mice.
    Lee HY; Kaneki M; Andreas J; Tompkins RG; Martyn JA
    Shock; 2011 Dec; 36(6):580-5. PubMed ID: 21937949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle mitochondrial dysfunction mediated by
    Aggarwal S; Singh V; Chakraborty A; Cha S; Dimitriou A; de Crescenzo C; Izikson O; Yu L; Plebani R; Tzika AA; Rahme LG
    mBio; 2024 Jul; 15(7):e0129224. PubMed ID: 38860823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study.
    Jucker BM; Yang D; Casey WM; Olzinski AR; Williams C; Lenhard SC; Legos JJ; Hawk CT; Sarkar SK; Newsholme SJ
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1256-64. PubMed ID: 17726146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.
    Tzika AA; Fontes-Oliveira CC; Shestov AA; Constantinou C; Psychogios N; Righi V; Mintzopoulos D; Busquets S; Lopez-Soriano FJ; Milot S; Lepine F; Mindrinos MN; Rahme LG; Argiles JM
    Int J Oncol; 2013 Sep; 43(3):886-94. PubMed ID: 23817738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burn trauma in skeletal muscle results in oxidative stress as assessed by in vivo electron paramagnetic resonance.
    Khan N; Mupparaju SP; Mintzopoulos D; Kesarwani M; Righi V; Rahme LG; Swartz HM; Tzika AA
    Mol Med Rep; 2008; 1(6):813-819. PubMed ID: 21179378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults.
    Porter C; Herndon DN; Børsheim E; Chao T; Reidy PT; Borack MS; Rasmussen BB; Chondronikola M; Saraf MK; Sidossis LS
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(5):E462-7. PubMed ID: 25074988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice.
    Campbell MD; Duan J; Samuelson AT; Gaffrey MJ; Merrihew GE; Egertson JD; Wang L; Bammler TK; Moore RJ; White CC; Kavanagh TJ; Voss JG; Szeto HH; Rabinovitch PS; MacCoss MJ; Qian WJ; Marcinek DJ
    Free Radic Biol Med; 2019 Apr; 134():268-281. PubMed ID: 30597195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term Skeletal Muscle Mitochondrial Dysfunction is Associated with Hypermetabolism in Severely Burned Children.
    Porter C; Herndon DN; Børsheim E; Bhattarai N; Chao T; Reidy PT; Rasmussen BB; Andersen CR; Suman OE; Sidossis LS
    J Burn Care Res; 2016; 37(1):53-63. PubMed ID: 26361327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MITOCHONDRIA: investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy.
    Prompers JJ; Wessels B; Kemp GJ; Nicolay K
    Int J Biochem Cell Biol; 2014 May; 50():67-72. PubMed ID: 24569118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle.
    Lebon V; Dufour S; Petersen KF; Ren J; Jucker BM; Slezak LA; Cline GW; Rothman DL; Shulman GI
    J Clin Invest; 2001 Sep; 108(5):733-7. PubMed ID: 11544279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics.
    Porter C; Herndon DN; Bhattarai N; Ogunbileje JO; Szczesny B; Szabo C; Toliver-Kinsky T; Sidossis LS
    Burns; 2016 Feb; 42(1):112-122. PubMed ID: 26615714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis.
    Birk AV; Chao WM; Bracken C; Warren JD; Szeto HH
    Br J Pharmacol; 2014 Apr; 171(8):2017-28. PubMed ID: 24134698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress mediates ethanol-induced skeletal muscle mitochondrial dysfunction and dysregulated protein synthesis and autophagy.
    Kumar A; Davuluri G; Welch N; Kim A; Gangadhariah M; Allawy A; Priyadarshini A; McMullen MR; Sandlers Y; Willard B; Hoppel CL; Nagy LE; Dasarathy S
    Free Radic Biol Med; 2019 Dec; 145():284-299. PubMed ID: 31574345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.
    Lustgarten MS; Jang YC; Liu Y; Qi W; Qin Y; Dahia PL; Shi Y; Bhattacharya A; Muller FL; Shimizu T; Shirasawa T; Richardson A; Van Remmen H
    Aging Cell; 2011 Jun; 10(3):493-505. PubMed ID: 21385310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice.
    Siegel MP; Kruse SE; Percival JM; Goh J; White CC; Hopkins HC; Kavanagh TJ; Szeto HH; Rabinovitch PS; Marcinek DJ
    Aging Cell; 2013 Oct; 12(5):763-71. PubMed ID: 23692570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.