These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23482915)

  • 41. Surface plasmon resonance biosensors incorporating gold nanoparticles.
    Bedford EE; Spadavecchia J; Pradier CM; Gu FX
    Macromol Biosci; 2012 Jun; 12(6):724-39. PubMed ID: 22416018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.
    François A; Laroche A; Pinaud N; Salmon L; Ruiz J; Robert J; Astruc D
    ChemMedChem; 2011 Nov; 6(11):2003-8. PubMed ID: 21834092
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of proteins by functionalized gold nanoparticles using click chemistry.
    Zhu K; Zhang Y; He S; Chen W; Shen J; Wang Z; Jiang X
    Anal Chem; 2012 May; 84(10):4267-70. PubMed ID: 22540271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface.
    Jung J; Na K; Lee J; Kim KW; Hyun J
    Anal Chim Acta; 2009 Sep; 651(1):91-7. PubMed ID: 19733741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue.
    Eck W; Craig G; Sigdel A; Ritter G; Old LJ; Tang L; Brennan MF; Allen PJ; Mason MD
    ACS Nano; 2008 Nov; 2(11):2263-72. PubMed ID: 19206392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes.
    He Z; Liu J; Du L
    Nanoscale; 2014 Aug; 6(15):9017-24. PubMed ID: 24970029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling.
    Liu Y; Han X; He L; Yin Y
    Angew Chem Int Ed Engl; 2012 Jun; 51(26):6373-7. PubMed ID: 22623318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrophoretic mobilities of PEGylated gold NPs.
    Doane TL; Cheng Y; Babar A; Hill RJ; Burda C
    J Am Chem Soc; 2010 Nov; 132(44):15624-31. PubMed ID: 20958038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. N-1-(2-mercaptoethyl)thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+.
    Chen L; Lou T; Yu C; Kang Q; Chen L
    Analyst; 2011 Nov; 136(22):4770-3. PubMed ID: 21952711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled aggregation of gold nanoparticle networks induced by alkali metal ions.
    Tamang S; Hotha S; Prasad BL
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2683-9. PubMed ID: 17685284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective colorimetric sensor for Hg2+ ions using a mixture of thiourea derivatives and gold nanoparticles stabilized with adenosine triphosphate.
    Kim S; Lee NH; Seo SH; Eom MS; Ahn S; Han MS
    Chem Asian J; 2010 Dec; 5(12):2463-6. PubMed ID: 20936644
    [No Abstract]   [Full Text] [Related]  

  • 53. Fluorescence correlation spectroscopy reveals strong fluorescence quenching of FITC adducts on PEGylated gold nanoparticles in water and the presence of fluorescent aggregates of desorbed thiolate ligands.
    Loumaigne M; Praho R; Nutarelli D; Werts MH; Débarre A
    Phys Chem Chem Phys; 2010 Sep; 12(36):11004-14. PubMed ID: 20668732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles.
    Tan E; Yin P; Lang X; Zhang H; Guo L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1007-12. PubMed ID: 22925976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals.
    Palui G; Na HB; Mattoussi H
    Langmuir; 2012 Feb; 28(5):2761-72. PubMed ID: 22201293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods.
    Zhu Y; Xu L; Ma W; Xu Z; Kuang H; Wang L; Xu C
    Chem Commun (Camb); 2012 Dec; 48(97):11889-91. PubMed ID: 23125979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles.
    Fan Y; Long YF; Li YF
    Anal Chim Acta; 2009 Oct; 653(2):207-11. PubMed ID: 19808115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time monitoring of copolymer stabilized growing gold nanoparticles.
    Polte J; Emmerling F; Radtke M; Reinholz U; Riesemeier H; Thünemann AF
    Langmuir; 2010 Apr; 26(8):5889-94. PubMed ID: 20085232
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent.
    Bogdanov AA; Gupta S; Koshkina N; Corr SJ; Zhang S; Curley SA; Han G
    Bioconjug Chem; 2015 Jan; 26(1):39-50. PubMed ID: 25496453
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One-pot aqueous phase growth of biocompatible 15-130 nm gold nanoparticles stabilized with bidentate PEG.
    Oh E; Susumu K; Jain V; Kim M; Huston A
    J Colloid Interface Sci; 2012 Jun; 376(1):107-11. PubMed ID: 22480398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.