These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
924 related articles for article (PubMed ID: 23483088)
1. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088 [TBL] [Abstract][Full Text] [Related]
2. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Ma C; Zhang W; He YS; Gong Q; Che H; Ma ZF Nanoscale; 2016 Feb; 8(7):4121-6. PubMed ID: 26866581 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage. Jiang Y; Li Y; Zhou P; Yu S; Sun W; Dou S ACS Appl Mater Interfaces; 2015 Dec; 7(48):26367-73. PubMed ID: 26580088 [TBL] [Abstract][Full Text] [Related]
4. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries. Xue H; Zhao J; Tang J; Gong H; He P; Zhou H; Yamauchi Y; He J Chemistry; 2016 Mar; 22(14):4915-23. PubMed ID: 26918383 [TBL] [Abstract][Full Text] [Related]
5. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178 [TBL] [Abstract][Full Text] [Related]
6. Tin dioxide@carbon core-shell nanoarchitectures anchored on wrinkled graphene for ultrafast and stable lithium storage. Zhou X; Liu W; Yu X; Liu Y; Fang Y; Klankowski S; Yang Y; Brown JE; Li J ACS Appl Mater Interfaces; 2014 May; 6(10):7434-43. PubMed ID: 24784816 [TBL] [Abstract][Full Text] [Related]
7. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Srinivasan NR; Mitra S; Bandyopadhyaya R Phys Chem Chem Phys; 2014 Apr; 16(14):6630-40. PubMed ID: 24576943 [TBL] [Abstract][Full Text] [Related]
8. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries. Zhou D; Song WL; Fan LZ ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. Li Y; Zhang H; Chen Y; Shi Z; Cao X; Guo Z; Shen PK ACS Appl Mater Interfaces; 2016 Jan; 8(1):197-207. PubMed ID: 26654790 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability. Xu W; Xie Z; Cui X; Zhao K; Zhang L; Dietrich G; Dooley KM; Wang Y ACS Appl Mater Interfaces; 2015 Oct; 7(40):22533-41. PubMed ID: 26389757 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries. Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional SnO₂@TiO₂ double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries. Zhang H; Ren W; Cheng C Nanotechnology; 2015 Jul; 26(27):274002. PubMed ID: 26082042 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical SnO2 /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithium-Ion Batteries. Wang M; Li S; Zhang Y; Huang J Chemistry; 2015 Nov; 21(45):16195-202. PubMed ID: 26397841 [TBL] [Abstract][Full Text] [Related]
14. Interface chemistry engineering of protein-directed SnO₂ nanocrystal-based anode for lithium-ion batteries with improved performance. Wang L; Wang D; Dong Z; Zhang F; Jin J Small; 2014 Mar; 10(5):998-1007. PubMed ID: 24170365 [TBL] [Abstract][Full Text] [Related]
15. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Wang X; Li Z; Zhang Z; Li Q; Guo E; Wang C; Yin L Nanoscale; 2015 Feb; 7(8):3604-13. PubMed ID: 25634442 [TBL] [Abstract][Full Text] [Related]
16. Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage. Zhou ZW; Liu YT; Xie XM; Ye XY ACS Appl Mater Interfaces; 2016 Mar; 8(11):7092-100. PubMed ID: 26927734 [TBL] [Abstract][Full Text] [Related]
17. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Ko YD; Kang JG; Park JG; Lee S; Kim DW Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930 [TBL] [Abstract][Full Text] [Related]
18. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage. Liu Y; Liu P; Wu D; Huang Y; Tang Y; Su Y; Zhang F; Feng X Chemistry; 2015 Mar; 21(14):5617-22. PubMed ID: 25694249 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders. Gurunathan P; Ette PM; Ramesha K ACS Appl Mater Interfaces; 2014 Oct; 6(19):16556-64. PubMed ID: 25203752 [TBL] [Abstract][Full Text] [Related]
20. SnO Zhang F; Yang C; Gao X; Chen S; Hu Y; Guan H; Ma Y; Zhang J; Zhou H; Qi L ACS Appl Mater Interfaces; 2017 Mar; 9(11):9620-9629. PubMed ID: 28248075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]