BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23483580)

  • 1. Function of death-associated protein 1 in proliferation, differentiation, and apoptosis of chicken satellite cells.
    Shin J; McFarland DC; Strasburg GM; Velleman SG
    Muscle Nerve; 2013 Nov; 48(5):777-90. PubMed ID: 23483580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of turkey myogenic satellite cell differentiation through the shedding of glypican-1.
    Velleman SG; Song Y; Shin J; McFarland DC
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):36-43. PubMed ID: 23069913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle.
    Zhang Y; Cong X; Wang A; Jiang H
    J Anim Sci; 2014 Aug; 92(8):3284-90. PubMed ID: 24948655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular matrix proteoglycan decorin-mediated myogenic satellite cell responsiveness to transforming growth factor-beta1 during cell proliferation and differentiation Decorin and transforming growth factor-beta1 in satellite cells.
    Li X; McFarland DC; Velleman SG
    Domest Anim Endocrinol; 2008 Oct; 35(3):263-73. PubMed ID: 18650056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pitx genes are redeployed in adult myogenesis where they can act to promote myogenic differentiation in muscle satellite cells.
    Knopp P; Figeac N; Fortier M; Moyle L; Zammit PS
    Dev Biol; 2013 May; 377(1):293-304. PubMed ID: 23438814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis.
    Koning M; Werker PM; van Luyn MJ; Krenning G; Harmsen MC
    Differentiation; 2012 Nov; 84(4):314-21. PubMed ID: 23023067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of skeletal muscle stem cells through epigenetic mechanisms.
    Sousa-Victor P; Muñoz-Cánoves P; Perdiguero E
    Toxicol Mech Methods; 2011 May; 21(4):334-42. PubMed ID: 21495871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APC is required for muscle stem cell proliferation and skeletal muscle tissue repair.
    Parisi A; Lacour F; Giordani L; Colnot S; Maire P; Le Grand F
    J Cell Biol; 2015 Aug; 210(5):717-26. PubMed ID: 26304725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of glypican-1 on turkey skeletal muscle cell proliferation, differentiation and fibroblast growth factor 2 responsiveness.
    Velleman SG; Liu C; Coy CS; McFarland DC
    Dev Growth Differ; 2006 May; 48(4):271-6. PubMed ID: 16681652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal.
    Halevy O; Piestun Y; Allouh MZ; Rosser BW; Rinkevich Y; Reshef R; Rozenboim I; Wleklinski-Lee M; Yablonka-Reuveni Z
    Dev Dyn; 2004 Nov; 231(3):489-502. PubMed ID: 15390217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six family genes control the proliferation and differentiation of muscle satellite cells.
    Yajima H; Motohashi N; Ono Y; Sato S; Ikeda K; Masuda S; Yada E; Kanesaki H; Miyagoe-Suzuki Y; Takeda S; Kawakami K
    Exp Cell Res; 2010 Oct; 316(17):2932-44. PubMed ID: 20696153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis.
    Wagers AJ; Conboy IM
    Cell; 2005 Sep; 122(5):659-67. PubMed ID: 16143100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular signature of quiescent satellite cells in adult skeletal muscle.
    Fukada S; Uezumi A; Ikemoto M; Masuda S; Segawa M; Tanimura N; Yamamoto H; Miyagoe-Suzuki Y; Takeda S
    Stem Cells; 2007 Oct; 25(10):2448-59. PubMed ID: 17600112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pax7 and myogenic progression in skeletal muscle satellite cells.
    Zammit PS; Relaix F; Nagata Y; Ruiz AP; Collins CA; Partridge TA; Beauchamp JR
    J Cell Sci; 2006 May; 119(Pt 9):1824-32. PubMed ID: 16608873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.
    Cornelison D
    Curr Top Dev Biol; 2018; 126():205-233. PubMed ID: 29304999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.
    Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB
    Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of satellite cells in muscle growth and maintenance of muscle mass.
    Pallafacchina G; Blaauw B; Schiaffino S
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S12-8. PubMed ID: 22621743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucine/glutamic acid/lysine protein 1 is localized to subsets of myonuclei in bovine muscle fibers and satellite cells.
    Ouellette SE; Li J; Sun W; Tsuda S; Walker DK; Hersom MJ; Johnson SE
    J Anim Sci; 2009 Oct; 87(10):3134-41. PubMed ID: 19542507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of static magnetic fields on human myoblast cell cultures.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR
    Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M-cadherin-mediated intercellular interactions activate satellite cell division.
    Marti M; Montserrat N; Pardo C; Mulero L; Miquel-Serra L; Rodrigues AM; Andrés Vaquero J; Kuebler B; Morera C; Barrero MJ; Izpisua Belmonte JC
    J Cell Sci; 2013 Nov; 126(Pt 22):5116-31. PubMed ID: 24046443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.