These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23483703)

  • 1. Post-harvest proteomics and food security.
    Pedreschi R; Lurie S; Hertog M; Nicolaï B; Mes J; Woltering E
    Proteomics; 2013 Jun; 13(12-13):1772-83. PubMed ID: 23483703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss.
    Kumari C; Sharma M; Kumar V; Sharma R; Kumar V; Sharma P; Kumar P; Irfan M
    Bioengineering (Basel); 2022 Apr; 9(4):. PubMed ID: 35447736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coping with abiotic stress: proteome changes for crop improvement.
    Abreu IA; Farinha AP; Negrão S; Gonçalves N; Fonseca C; Rodrigues M; Batista R; Saibo NJ; Oliveira MM
    J Proteomics; 2013 Nov; 93():145-68. PubMed ID: 23886779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of proteomics to understand seed development in rice.
    Deng ZY; Gong CY; Wang T
    Proteomics; 2013 Jun; 13(12-13):1784-800. PubMed ID: 23483697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics techniques for the development of flood tolerant crops.
    Komatsu S; Hiraga S; Yanagawa Y
    J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives.
    Chakraborty S; Salekdeh GH; Yang P; Woo SH; Chin CF; Gehring C; Haynes PA; Mirzaei M; Komatsu S
    J Proteome Res; 2015 Jul; 14(7):2723-44. PubMed ID: 26035454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GM as a route for delivery of sustainable crop protection.
    Bruce TJ
    J Exp Bot; 2012 Jan; 63(2):537-41. PubMed ID: 22016426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues.
    Agrawal GK; Sarkar A; Righetti PG; Pedreschi R; Carpentier S; Wang T; Barkla BJ; Kohli A; Ndimba BK; Bykova NV; Rampitsch C; Zolla L; Rafudeen MS; Cramer R; Bindschedler LV; Tsakirpaloglou N; Ndimba RJ; Farrant JM; Renaut J; Job D; Kikuchi S; Rakwal R
    Mass Spectrom Rev; 2013; 32(5):335-65. PubMed ID: 23315723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: Analysis of determinants, volumes and reduction strategies.
    Santos SFD; Cardoso RCV; Borges ÍMP; Almeida ACE; Andrade ES; Ferreira IO; Ramos LDC
    Waste Manag; 2020 Jan; 101():161-170. PubMed ID: 31610477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying agricultural crops for improved nutrition.
    McGloughlin MN
    N Biotechnol; 2010 Nov; 27(5):494-504. PubMed ID: 20654747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics and plant disease: advances in combating a major threat to the global food supply.
    Rampitsch C; Bykova NV
    Proteomics; 2012 Feb; 12(4-5):673-90. PubMed ID: 22246663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.
    Owiti J; Grossmann J; Gehrig P; Dessimoz C; Laloi C; Hansen MB; Gruissem W; Vanderschuren H
    Plant J; 2011 Jul; 67(1):145-56. PubMed ID: 21435052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics in commercial crops: An overview.
    Tan BC; Lim YS; Lau SE
    J Proteomics; 2017 Oct; 169():176-188. PubMed ID: 28546092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing vegetables in developing countries for local urban populations and export markets: problems confronting small-scale producers.
    Dinham B
    Pest Manag Sci; 2003 May; 59(5):575-82. PubMed ID: 12741526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China.
    Fan M; Shen J; Yuan L; Jiang R; Chen X; Davies WJ; Zhang F
    J Exp Bot; 2012 Jan; 63(1):13-24. PubMed ID: 21963614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Multifunctional Role of Chitosan in Horticultural Crops; A Review.
    Sharif R; Mujtaba M; Ur Rahman M; Shalmani A; Ahmad H; Anwar T; Tianchan D; Wang X
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29642651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant disease: a threat to global food security.
    Strange RN; Scott PR
    Annu Rev Phytopathol; 2005; 43():83-116. PubMed ID: 16078878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.