These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23484164)

  • 1. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects.
    Ahmed F; Rafii MY; Ismail MR; Juraimi AS; Rahim HA; Asfaliza R; Latif MA
    Biomed Res Int; 2013; 2013():963525. PubMed ID: 23484164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing drought tolerance in plants: recent advances.
    Ashraf M
    Biotechnol Adv; 2010; 28(1):169-83. PubMed ID: 19914371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding.
    Zhang X; Shabala S; Koutoulis A; Shabala L; Zhou M
    Planta; 2017 Feb; 245(2):283-295. PubMed ID: 27730410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects.
    Bohra A; Pandey MK; Jha UC; Singh B; Singh IP; Datta D; Chaturvedi SK; Nadarajan N; Varshney RK
    Theor Appl Genet; 2014 Jun; 127(6):1263-91. PubMed ID: 24710822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley.
    Gill MB; Zeng F; Shabala L; Zhang G; Yu M; Demidchik V; Shabala S; Zhou M
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30736310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities for Improving Waterlogging Tolerance in Cereal Crops-Physiological Traits and Genetic Mechanisms.
    Tong C; Hill CB; Zhou G; Zhang XQ; Jia Y; Li C
    Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops.
    Kumar P; Choudhary M; Halder T; Prakash NR; Singh V; V VT; Sheoran S; T RK; Longmei N; Rakshit S; Siddique KHM
    Heredity (Edinb); 2022 Jun; 128(6):497-518. PubMed ID: 35249098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals.
    Raj SRG; Nadarajah K
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance.
    Zhang X; Zhou G; Shabala S; Koutoulis A; Shabala L; Johnson P; Li C; Zhou M
    Theor Appl Genet; 2016 Jun; 129(6):1167-77. PubMed ID: 26908252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omics Approaches for Engineering Wheat Production under Abiotic Stresses.
    Shah T; Xu J; Zou X; Cheng Y; Nasir M; Zhang X
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.).
    Li H; Vaillancourt R; Mendham N; Zhou M
    BMC Genomics; 2008 Aug; 9():401. PubMed ID: 18752688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm.
    Zaidi PH; Rashid Z; Vinayan MT; Almeida GD; Phagna RK; Babu R
    PLoS One; 2015; 10(4):e0124350. PubMed ID: 25884393
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Singh D; Chaudhary P; Taunk J; Singh CK; Singh D; Tomar RSS; Aski M; Konjengbam NS; Raje RS; Singh S; Sengar RS; Yadav RK; Pal M
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.
    Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP
    Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.
    Jha UC; Bohra A; Jha R
    Plant Cell Rep; 2017 Jan; 36(1):1-35. PubMed ID: 27878342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.
    Varshney RK; Mohan SM; Gaur PM; Gangarao NV; Pandey MK; Bohra A; Sawargaonkar SL; Chitikineni A; Kimurto PK; Janila P; Saxena KB; Fikre A; Sharma M; Rathore A; Pratap A; Tripathi S; Datta S; Chaturvedi SK; Mallikarjuna N; Anuradha G; Babbar A; Choudhary AK; Mhase MB; Bharadwaj Ch; Mannur DM; Harer PN; Guo B; Liang X; Nadarajan N; Gowda CL
    Biotechnol Adv; 2013 Dec; 31(8):1120-34. PubMed ID: 23313999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.